"Thus if it were stated to be a law of nature that all heavy bodies fall to the ground, it would probably be said that the resistance of the atmosphere, which prevents a balloon from falling, const.i.tutes the balloon an exception to that pretended law of nature. But the real law is, that all heavy bodies _tend_ to fall; and to this there is no exception, not even the sun and moon; for even they, as every astronomer knows, tend towards the earth, with a force exactly equal to that with which the earth tends towards them. The resistance of the atmosphere might, in the particular case of the balloon, from a misapprehension of what the law of gravitation is, be said to _prevail over_ the law; but its disturbing effect is quite as real in every other case, since though it does not prevent, it r.e.t.a.r.ds the fall of all bodies whatever. The rule, and the so-called exception, do not divide the cases between them; each of them is a comprehensive rule extending to all cases. To call one of these concurrent principles an exception to the other, is superficial, and contrary to the correct principles of nomenclature and arrangement. An effect of precisely the same kind, and arising from the same cause, ought not to be placed in two different categories, merely as there does or does not exist another cause preponderating over it."[46]
6. We have now to consider according to what method these complex effects, compounded of the effects of many causes, are to be studied; how we are enabled to trace each effect to the concurrence of causes in which it originated, and ascertain the conditions of its recurrence--the circ.u.mstances in which it may be expected again to occur. The conditions of a phenomenon which arises from a composition of causes, may be investigated either deductively or experimentally.
The case, it is evident, is naturally susceptible of the deductive mode of investigation. The law of an effect of this description is a result of the laws of the separate causes on the combination of which it depends, and is therefore in itself capable of being deduced from these laws. This is called the method _ priori_. The other, or _ posteriori_ method, professes to proceed according to the canons of experimental inquiry. Considering the whole a.s.semblage of concurrent causes which produced the phenomenon, as one single cause, it attempts to ascertain the cause in the ordinary manner, by a comparison of instances. This second method subdivides itself into two different varieties. If it merely collates instances of the effect, it is a method of pure observation. If it operates upon the causes, and tries different combinations of them, in hopes of ultimately hitting the precise combination which will produce the given total effect, it is a method of experiment.
In order more completely to clear up the nature of each of these three methods, and determine which of them deserves the preference, it will be expedient (conformably to a favourite maxim of Lord Chancellor Eldon, to which, though it has often incurred philosophical ridicule, a deeper philosophy will not refuse its sanction) to "clothe them in circ.u.mstances." We shall select for this purpose a case which as yet furnishes no very brilliant example of the success of any of the three methods, but which is all the more suited to ill.u.s.trate the difficulties inherent in them. Let the subject of inquiry be, the conditions of health and disease in the human body; or (for greater simplicity) the conditions of recovery from a given disease; and in order to narrow the question still more, let it be limited, in the first instance, to this one inquiry: Is, or is not some particular medicament (mercury, for instance) a remedy for the given disease.
Now, the deductive method would set out from known properties of mercury, and known laws of the human body, and by reasoning from these, would attempt to discover whether mercury will act upon the body when in the morbid condition supposed, in such a manner as to restore health.
The experimental method would simply administer mercury in as many cases as possible, noting the age, s.e.x, temperament, and other peculiarities of bodily const.i.tution, the particular form or variety of the disease, the particular stage of its progress, &c., remarking in which of these cases it produced a salutary effect, and with what circ.u.mstances it was on those occasions combined. The method of simple observation would compare instances of recovery, to find whether they agreed in having been preceded by the administration of mercury; or would compare instances of recovery with instances of failure, to find cases which, agreeing in all other respects, differed only in the fact that mercury had been administered, or that it had not.
7. That the last of these three modes of investigation is applicable to the case, no one has ever seriously contended. No conclusions of value on a subject of such intricacy, ever were obtained in that way.
The utmost that could result would be a vague general impression for or against the efficacy of mercury, of no avail for guidance unless confirmed by one of the other two methods. Not that the results, which this method strives to obtain, would not be of the utmost possible value if they could be obtained. If all the cases of recovery which presented themselves, in an examination extending to a great number of instances, were cases in which mercury had been administered, we might generalize with confidence from this experience, and should have obtained a conclusion of real value. But no such basis for generalization can we, in a case of this description, hope to obtain. The reason is that which we have spoken of as const.i.tuting the characteristic imperfection of the Method of Agreement; Plurality of Causes. Supposing even that mercury does tend to cure the disease, so many other causes, both natural and artificial, also tend to cure it, that there are sure to be abundant instances of recovery in which mercury has not been administered: unless, indeed, the practice be to administer it in all cases; on which supposition it will equally be found in the cases of failure.
When an effect results from the union of many causes, the share which each has in the determination of the effect cannot in general be great: and the effect is not likely, even in its presence or absence, still less in its variations, to follow, even approximately, any one of the causes. Recovery from a disease is an event to which, in every case, many influences must concur. Mercury may be one such influence; but from the very fact that there are many other such, it will necessarily happen that although mercury is administered, the patient, for want of other concurring influences, will often not recover, and that he often will recover when it is not administered, the other favourable influences being sufficiently powerful without it. Neither, therefore, will the instances of recovery agree in the administration of mercury, nor will the instances of failure agree in its non-administration. It is much if, by multiplied and accurate returns from hospitals and the like, we can collect that there are rather more recoveries and rather fewer failures when mercury is administered than when it is not; a result of very secondary value even as a guide to practice, and almost worthless as a contribution to the theory of the subject.
8. The inapplicability of the method of simple observation to ascertain the conditions of effects dependent on many concurring causes, being thus recognised; we shall next inquire whether any greater benefit can be expected from the other branch of the _ posteriori_ method, that which proceeds by directly trying different combinations of causes, either artificially produced or found in nature, and taking notice what is their effect: as, for example, by actually trying the effect of mercury, in as many different circ.u.mstances as possible. This method differs from the one which we have just examined, in turning our attention directly to the causes or agents, instead of turning it to the effect, recovery from the disease. And since, as a general rule, the effects of causes are far more accessible to our study than the causes of effects, it is natural to think that this method has a much better chance of proving successful than the former.
The method now under consideration is called the Empirical Method; and in order to estimate it fairly, we must suppose it to be completely, not incompletely, empirical. We must exclude from it everything which partakes of the nature not of an experimental but of a deductive operation. If for instance we try experiments with mercury upon a person in health, in order to ascertain the general laws of its action upon the human body, and then reason from these laws to determine how it will act upon persons affected with a particular disease, this may be a really effectual method, but this is deduction. The experimental method does not derive the law of a complex case from the simpler laws which conspire to produce it, but makes its experiments directly upon the complex case. We must make entire abstraction of all knowledge of the simpler tendencies, the _modi operandi_ of mercury in detail. Our experimentation must aim at obtaining a direct answer to the specific question, Does or does not mercury tend to cure the particular disease?
Let us see, therefore, how far the case admits of the observance of those rules of experimentation, which it is found necessary to observe in other cases. When we devise an experiment to ascertain the effect of a given agent, there are certain precautions which we never, if we can help it, omit. In the first place, we introduce the agent into the midst of a set of circ.u.mstances which we have exactly ascertained. It needs hardly be remarked how far this condition is from being realized in any case connected with the phenomena of life; how far we are from knowing what are all the circ.u.mstances which pre-exist in any instance in which mercury is administered to a living being. This difficulty, however, though insuperable in most cases, may not be so in all; there are sometimes concurrences of many causes, in which we yet know accurately what the causes are. Moreover, the difficulty may be attenuated by sufficient multiplication of experiments, in circ.u.mstances rendering it improbable that any of the unknown causes should exist in them all. But when we have got clear of this obstacle, we encounter another still more serious. In other cases, when we intend to try an experiment, we do not reckon it enough that there be no circ.u.mstance in the case the presence of which is unknown to us. We require also that none of the circ.u.mstances which we do know, shall have effects susceptible of being confounded with those of the agent whose properties we wish to study. We take the utmost pains to exclude all causes capable of composition with the given cause; or if forced to let in any such causes, we take care to make them such that we can compute and allow for their influence, so that the effect of the given cause may, after the subduction of those other effects, be apparent as a residual phenomenon.
These precautions are inapplicable to such cases as we are now considering. The mercury of our experiment being tried with an unknown mult.i.tude (or even let it be a known mult.i.tude) of other influencing circ.u.mstances, the mere fact of their being influencing circ.u.mstances implies that they disguise the effect of the mercury, and preclude us from knowing whether it has any effect or not. Unless we already knew what and how much is owing to every other circ.u.mstance, (that is, unless we suppose the very problem solved which we are considering the means of solving,) we cannot tell that those other circ.u.mstances may not have produced the whole of the effect, independently or even in spite of the mercury. The Method of Difference, in the ordinary mode of its use, namely by comparing the state of things following the experiment with the state which preceded it, is thus, in the case of intermixture of effects, entirely unavailing; because other causes than that whose effect we are seeking to determine, have been operating during the transition. As for the other mode of employing the Method of Difference, namely by comparing, not the same case at two different periods, but different cases, this in the present instance is quite chimerical. In phenomena so complicated it is questionable if two cases, similar in all respects but one, ever occurred; and were they to occur, we could not possibly know that they were so exactly similar.
Anything like a scientific use of the method of experiment, in these complicated cases, is therefore out of the question. We can in the most favourable cases only discover, by a succession of trials, that a certain cause is _very often_ followed by a certain effect. For, in one of these conjunct effects, the portion which is determined by any one of the influencing agents, is generally, as we before remarked, but small; and it must be a more potent cause than most, if even the tendency which it really exerts is not thwarted by other tendencies in nearly as many cases as it is fulfilled.
If so little can be done by the experimental method to determine the conditions of an effect of many combined causes, in the case of medical science; still less is this method applicable to a cla.s.s of phenomena more complicated than even those of physiology, the phenomena of politics and history. There, Plurality of Causes exists in almost boundless excess, and effects are, for the most part, inextricably interwoven with one another. To add to the embarra.s.sment, most of the inquiries in political science relate to the production of effects of a most comprehensive description, such as the public wealth, public security, public morality, and the like: results liable to be affected directly or indirectly either in _plus_ or in _minus_ by nearly every fact which exists, or event which occurs, in human society. The vulgar notion, that the safe methods on political subjects are those of Baconian induction--that the true guide is not general reasoning, but specific experience--will one day be quoted as among the most unequivocal marks of a low state of the speculative faculties in any age in which it is accredited. Nothing can be more ludicrous than the sort of parodies on experimental reasoning which one is accustomed to meet with, not in popular discussion only, but in grave treatises, when the affairs of nations are the theme. "How," it is asked, "can an inst.i.tution be bad, when the country has prospered under it?" "How can such or such causes have contributed to the prosperity of one country, when another has prospered without them?" Whoever makes use of an argument of this kind, not intending to deceive, should be sent back to learn the elements of some one of the more easy physical sciences. Such reasoners ignore the fact of Plurality of Causes in the very case which affords the most signal example of it. So little could be concluded, in such a case, from any possible collation of individual instances, that even the impossibility, in social phenomena, of making artificial experiments, a circ.u.mstance otherwise so prejudicial to directly inductive inquiry, hardly affords, in this case, additional reason of regret. For even if we could try experiments upon a nation or upon the human race, with as little scruple as M. Magendie tried them on dogs and rabbits, we should never succeed in making two instances identical in every respect except the presence or absence of some one definite circ.u.mstance. The nearest approach to an experiment in the philosophical sense, which takes place in politics, is the introduction of a new operative element into national affairs by some special and a.s.signable measure of government, such as the enactment or repeal of a particular law. But where there are so many influences at work, it requires some time for the influence of any new cause upon national phenomena to become apparent; and as the causes operating in so extensive a sphere are not only infinitely numerous, but in a state of perpetual alteration, it is always certain that before the effect of the new cause becomes conspicuous enough to be a subject of induction, so many of the other influencing circ.u.mstances will have changed as to vitiate the experiment.
Two, therefore, of the three possible methods for the study of phenomena resulting from the composition of many causes, being, from the very nature of the case, inefficient and illusory, there remains only the third,--that which considers the causes separately, and infers the effect from the balance of the different tendencies which produce it: in short, the deductive, or _ priori_ method. The more particular consideration of this intellectual process requires a chapter to itself.
CHAPTER XI.
OF THE DEDUCTIVE METHOD.
1. The mode of investigation which, from the proved inapplicability of direct methods of observation and experiment, remains to us as the main source of the knowledge we possess or can acquire respecting the conditions, and laws of recurrence, of the more complex phenomena, is called, in its most general expression, the Deductive Method; and consists of three operations: the first, one of direct induction; the second, of ratiocination; the third, of verification.
I call the first step in the process an inductive operation, because there must be a direct induction as the basis of the whole; though in many particular investigations the place of the induction may be supplied by a prior deduction; but the premises of this prior deduction must have been derived from induction.
The problem of the Deductive Method is, to find the law of an effect, from the laws of the different tendencies of which it is the joint result. The first requisite, therefore, is to know the laws of those tendencies; the law of each of the concurrent causes: and this supposes a previous process of observation or experiment upon each cause separately; or else a previous deduction, which also must depend for its ultimate premises on observation or experiment. Thus, if the subject be social or historical phenomena, the premises of the Deductive Method must be the laws of the causes which determine that cla.s.s of phenomena; and those causes are human actions, together with the general outward circ.u.mstances under the influence of which mankind are placed, and which const.i.tute man"s position on the earth. The Deductive Method, applied to social phenomena, must begin, therefore, by investigating, or must suppose to have been already investigated, the laws of human action, and those properties of outward things by which the actions of human beings in society are determined. Some of these general truths will naturally be obtained by observation and experiment, others by deduction: the more complex laws of human action, for example, may be deduced from the simpler ones; but the simple or elementary laws will always, and necessarily, have been obtained by a directly inductive process.
To ascertain, then, the laws of each separate cause which takes a share in producing the effect, is the first desideratum of the Deductive Method. To know what the causes are, which must be subjected to this process of study, may or may not be difficult. In the case last mentioned, this first condition is of easy fulfilment. That social phenomena depend on the acts and mental impressions of human beings, never could have been a matter of any doubt, however imperfectly it may have been known either by what laws those impressions and actions are governed, or to what social consequences their laws naturally lead.
Neither, again, after physical science had attained a certain development, could there be any real doubt where to look for the laws on which the phenomena of life depend, since they must be the mechanical and chemical laws of the solid and fluid substances composing the organized body and the medium in which it subsists, together with the peculiar vital laws of the different tissues const.i.tuting the organic structure. In other cases, really far more simple than these, it was much less obvious in what quarter the causes were to be looked for: as in the case of the celestial phenomena. Until, by combining the laws of certain causes, it was found that those laws explained all the facts which experience had proved concerning the heavenly motions, and led to predictions which it always verified, mankind never knew that those _were_ the causes. But whether we are able to put the question before, or not until after, we have become capable of answering it, in either case it must be answered; the laws of the different causes must be ascertained, before we can proceed to deduce from them the conditions of the effect.
The mode of ascertaining those laws neither is, nor can be, any other than the fourfold method of experimental inquiry, already discussed. A few remarks on the application of that method to cases of the Composition of Causes, are all that is requisite.
It is obvious that we cannot expect to find the law of a tendency, by an induction from cases in which the tendency is counteracted. The laws of motion could never have been brought to light from the observation of bodies kept at rest by the equilibrium of opposing forces. Even where the tendency is not, in the ordinary sense of the word, counteracted, but only modified, by having its effects compounded with the effects arising from some other tendency or tendencies, we are still in an unfavourable position for tracing, by means of such cases, the law of the tendency itself. It would have been scarcely possible to discover the law that every body in motion tends to continue moving in a straight line, by an induction from instances in which the motion is deflected into a curve, by being compounded with the effect of an accelerating force. Notwithstanding the resources afforded in this description of cases by the Method of Concomitant Variations, the principles of a judicious experimentation prescribe that the law of each of the tendencies should be studied, if possible, in cases in which that tendency operates alone, or in combination with no agencies but those of which the effect can, from previous knowledge, be calculated and allowed for.
Accordingly, in the cases, unfortunately very numerous and important, in which the causes do not suffer themselves to be separated and observed apart, there is much difficulty in laying down with due certainty the inductive foundation necessary to support the deductive method. This difficulty is most of all conspicuous in the case of physiological phenomena; it being seldom possible to separate the different agencies which collectively compose an organized body, without destroying the very phenomena which it is our object to investigate:
--following life, in creatures we dissect, We lose it, in the moment we detect.
And for this reason I am inclined to the opinion, that physiology (greatly and rapidly progressive as it now is) is embarra.s.sed by greater natural difficulties, and is probably susceptible of a less degree of ultimate perfection, than even the social science; inasmuch as it is possible to study the laws and operations of one human mind apart from other minds, much less imperfectly than we can study the laws of one organ or tissue of the human body apart from the other organs or tissues.
It has been judiciously remarked that pathological facts, or, to speak in common language, diseases in their different forms and degrees, afford in the case of physiological investigation the most valuable equivalent to experimentation properly so called; inasmuch as they often exhibit to us a definite disturbance in some one organ or organic function, the remaining organs and functions being, in the first instance at least, unaffected. It is true that from the perpetual actions and reactions which are going on among all parts of the organic economy, there can be no prolonged disturbance in any one function without ultimately involving many of the others; and when once it has done so, the experiment for the most part loses its scientific value.
All depends on observing the early stages of the derangement; which, unfortunately, are of necessity the least marked. If, however, the organs and functions not disturbed in the first instance, become affected in a fixed order of succession, some light is thereby thrown upon the action which one organ exercises over another: and we occasionally obtain a series of effects which we can refer with some confidence to the original local derangement; but for this it is necessary that we should know that the original derangement _was_ local.
If it was what is termed const.i.tutional, that is, if we do not know in what part of the animal economy it took its rise, or the precise nature of the disturbance which took place in that part, we are unable to determine which of the various derangements was cause and which effect; which of them were produced by one another, and which by the direct, though perhaps tardy, action of the original cause.
Besides natural pathological facts, we can produce pathological facts artificially; we can try experiments, even in the popular sense of the term, by subjecting the living being to some external agent, such as the mercury of our former example, or the section of a nerve to ascertain the functions of different parts of the nervous system. As this experimentation is not intended to obtain a direct solution of any practical question, but to discover general laws, from which afterwards the conditions of any particular effect may be obtained by deduction; the best cases to select are those of which the circ.u.mstances can be best ascertained: and such are generally not those in which there is any practical object in view. The experiments are best tried, not in a state of disease, which is essentially a changeable state, but in the condition of health, comparatively a fixed state. In the one, unusual agencies are at work, the results of which we have no means of predicting; in the other, the course of the accustomed physiological phenomena would, it may generally be presumed, remain undisturbed, were it not for the disturbing cause which we introduce.
Such, with the occasional aid of the Method of Concomitant Variations, (the latter not less inc.u.mbered than the more elementary methods by the peculiar difficulties of the subject,) are our inductive resources for ascertaining the laws of the causes considered separately, when we have it not in our power to make trial of them in a state of actual separation. The insufficiency of these resources is so glaring, that no one can be surprised at the backward state of the science of physiology; in which indeed our knowledge of causes is so imperfect, that we can neither explain, nor could without specific experience have predicted, many of the facts which are certified to us by the most ordinary observation. Fortunately, we are much better informed as to the empirical laws of the phenomena, that is, the uniformities respecting which we cannot yet decide whether they are cases of causation, or mere results of it. Not only has the order in which the facts of organization and life successively manifest themselves, from the first germ of existence to death, been found to be uniform, and very accurately ascertainable; but, by a great application of the Method of Concomitant Variations to the entire facts of comparative anatomy and physiology, the characteristic organic structure corresponding to each cla.s.s of functions has been determined with considerable precision. Whether these organic conditions are the whole of the conditions, and in many cases whether they are conditions at all, or mere collateral effects of some common cause, we are quite ignorant: nor are we ever likely to know, unless we could construct an organized body, and try whether it would live.
Under such disadvantages do we, in cases of this description, attempt the initial, or inductive step, in the application of the Deductive Method to complex phenomena. But such, fortunately, is not the common case. In general, the laws of the causes on which the effect depends may be obtained by an induction from comparatively simple instances, or, at the worst, by deduction from the laws of simpler causes, so obtained. By simple instances are meant, of course, those in which the action of each cause was not intermixed or interfered with, or not to any great extent, by other causes whose laws were unknown. And only when the induction which furnished the premises to the Deductive method rested on such instances, has the application of such a method to the ascertainment of the laws of a complex effect, been attended with brilliant results.
2. When the laws of the causes have been ascertained, and the first stage of the great logical operation now under discussion satisfactorily accomplished, the second part follows; that of determining from the laws of the causes, what effect any given combination of those causes will produce. This is a process of calculation, in the wider sense of the term; and very often involves processes of calculation in the narrowest sense. It is a ratiocination; and when our knowledge of the causes is so perfect, as to extend to the exact numerical laws which they observe in producing their effects, the ratiocination may reckon among its premises the theorems of the science of number, in the whole immense extent of that science. Not only are the most advanced truths of mathematics often required to enable us to compute an effect, the numerical law of which we already know; but, even by the aid of those most advanced truths, we can go but a little way. In so simple a case as the common problem of three bodies gravitating towards one another, with a force directly as their ma.s.s and inversely as the square of the distance, all the resources of the calculus have not hitherto sufficed to obtain any general solution but an approximate one. In a case a little more complex, but still one of the simplest which arise in practice, that of the motion of a projectile, the causes which affect the velocity and range (for example) of a cannon-ball may be all known and estimated; the force of the gunpowder, the angle of elevation, the density of the air, the strength and direction of the wind; but it is one of the most difficult of mathematical problems to combine all these, so as to determine the effect resulting from their collective action.
Besides the theorems of number, those of geometry also come in as premises, where the effects take place in s.p.a.ce, and involve motion and extension, as in mechanics, optics, acoustics, astronomy. But when the complication increases, and the effects are under the influence of so many and such shifting causes as to give no room either for fixed numbers, or for straight lines and regular curves, (as in the case of physiological, to say nothing of mental and social phenomena,) the laws of number and extension are applicable, if at all, only on that large scale on which precision of details becomes unimportant. Although these laws play a conspicuous part in the most striking examples of the investigation of nature by the Deductive Method, as for example in the Newtonian theory of the celestial motions, they are by no means an indispensable part of every such process. All that is essential in it is reasoning from a general law to a particular case, that is, determining by means of the particular circ.u.mstances of that case, what result is required in that instance to fulfil the law. Thus in the Torricellian experiment, if the fact that air has weight had been previously known, it would have been easy, without any numerical data, to deduce from the general law of equilibrium, that the mercury would stand in the tube at such a height that the column of mercury would exactly balance a column of the atmosphere of equal diameter; because, otherwise, equilibrium would not exist.
By such ratiocinations from the separate laws of the causes, we may, to a certain extent, succeed in answering either of the following questions: Given a certain combination of causes, what effect will follow? and, What combination of causes, if it existed, would produce a given effect? In the one case, we determine the effect to be expected in any complex circ.u.mstances of which the different elements are known: in the other case we learn, according to what law--under what antecedent conditions--a given complex effect will occur.
3. But (it may here be asked) are not the same arguments by which the methods of direct observation and experiment were set aside as illusory when applied to the laws of complex phenomena, applicable with equal force against the Method of Deduction? When in every single instance a mult.i.tude, often an unknown mult.i.tude, of agencies, are clashing and combining, what security have we that in our computation _ priori_ we have taken all these into our reckoning? How many must we not generally be ignorant of? Among those which we know, how probable that some have been overlooked; and, even were all included, how vain the pretence of summing up the effects of many causes, unless we know accurately the numerical law of each,--a condition in most cases not to be fulfilled; and even when fulfilled, to make the calculation transcends, in any but very simple cases, the utmost power of mathematical science with all its most modern improvements.
These objections have real weight, and would be altogether unanswerable, if there were no test by which, when we employ the Deductive Method, we might judge whether an error of any of the above descriptions had been committed or not. Such a test however there is: and its application forms, under the name of Verification, the third essential component part of the Deductive Method; without which all the results it can give have little other value than that of conjecture. To warrant reliance on the general conclusions arrived at by deduction, these conclusions must be found, on careful comparison, to accord with the results of direct observation wherever it can be had. If, when we have experience to compare with them, this experience confirms them, we may safely trust to them in other cases of which our specific experience is yet to come. But if our deductions have led to the conclusion that from a particular combination of causes a given effect would result, then in all known cases where that combination can be shown to have existed, and where the effect has not followed, we must be able to show (or at least to make a probable surmise) what frustrated it: if we cannot, the theory is imperfect, and not yet to be relied upon. Nor is the verification complete, unless some of the cases in which the theory is borne out by the observed result, are of at least equal complexity with any other cases in which its application could be called for.
If direct observation and collation of instances have furnished us with any empirical laws of the effect (whether true in all observed cases, or only true for the most part), the most effectual verification of which the theory could be susceptible would be, that it led deductively to those empirical laws; that the uniformities, whether complete or incomplete, which were observed to exist among the phenomena, were accounted for by the laws of the causes--were such as could not but exist if those be really the causes by which the phenomena are produced.
Thus it was very reasonably deemed an essential requisite of any true theory of the causes of the celestial motions, that it should lead by deduction to Kepler"s laws: which, accordingly, the Newtonian theory did.
In order, therefore, to facilitate the verification of theories obtained by deduction, it is important that as many as possible of the empirical laws of the phenomena should be ascertained, by a comparison of instances, conformably to the Method of Agreement: as well as (it must be added) that the phenomena themselves should be described, in the most comprehensive as well as accurate manner possible; by collecting from the observation of parts, the simplest possible correct expressions for the corresponding wholes: as when the series of the observed places of a planet was first expressed by a circle, then by a system of epicycles, and subsequently by an ellipse.
It is worth remarking, that complex instances which would have been of no use for the discovery of the simple laws into which we ultimately a.n.a.lyse their phenomena, nevertheless, when they have served to verify the a.n.a.lysis, become additional evidence of the laws themselves.
Although we could not have got at the law from complex cases, still when the law, got at otherwise, is found to be in accordance with the result of a complex case, that case becomes a new experiment on the law, and helps to confirm what it did not a.s.sist to discover. It is a new trial of the principle in a different set of circ.u.mstances; and occasionally serves to eliminate some circ.u.mstance not previously excluded, and the exclusion of which might require an experiment impossible to be executed. This was strikingly conspicuous in the example formerly quoted, in which the difference between the observed and the calculated velocity of sound was ascertained to result from the heat extricated by the condensation which takes place in each sonorous vibration. This was a trial, in new circ.u.mstances, of the law of the development of heat by compression; and it added materially to the proof of the universality of that law. Accordingly any law of nature is deemed to have gained in point of certainty, by being found to explain some complex case which had not previously been thought of in connexion with it; and this indeed is a consideration to which it is the habit of scientific inquirers to attach rather too much value than too little.
To the Deductive Method, thus characterized in its three const.i.tuent parts, Induction, Ratiocination, and Verification, the human mind is indebted for its most conspicuous triumphs in the investigation of nature. To it we owe all the theories by which vast and complicated phenomena are embraced under a few simple laws, which, considered as the laws of those great phenomena, could never have been detected by their direct study. We may form some conception of what the method has done for us, from the case of the celestial motions; one of the simplest among the greater instances of the Composition of Causes, since (except in a few cases not of primary importance) each of the heavenly bodies may be considered, without material inaccuracy, to be never at one time influenced by the attraction of more than two bodies, the sun and one other planet or satellite; making, with the reaction of the body itself, and the force generated by the body"s own motion and acting in the direction of the tangent, only four different agents on the concurrence of which the motions of that body depend; a much smaller number, no doubt, than that by which any other of the great phenomena of nature is determined or modified. Yet how could we ever have ascertained the combination of forces on which the motions of the earth and planets are dependent, by merely comparing the orbits or velocities of different planets, or the different velocities or positions of the same planet?
Notwithstanding the regularity which manifests itself in those motions, in a degree so rare among the effects of a concurrence of causes; and although the periodical recurrence of exactly the same effect, affords positive proof that all the combinations of causes which occur at all, recur periodically; we should not have known what the causes were, if the existence of agencies precisely similar on our own earth had not, fortunately, brought the causes themselves within the reach of experimentation under simple circ.u.mstances. As we shall have occasion to a.n.a.lyse, further on, this great example of the Method of Deduction, we shall not occupy any time with it here, but shall proceed to that secondary application of the Deductive Method, the result of which is not to prove laws of phenomena, but to explain them.
CHAPTER XII.
OF THE EXPLANATION OF LAWS OF NATURE.