For the purpose of steering the carriage, a vertical spindle was placed at some distance before the axle of the front wheels and on its lower end a small drum was fixed. Around this drum was coiled a chain with its middle fixed upon the drum, and its ends made secure to the front axle formed a triangle with the drum, situated at the angle opposite the longest side.

The other end of the vertical spindle was connected with a frame situated in front of the coachman"s or rather the steersman"s seat and here on the spindle was a horizontal beveled-toothed wheel. Over this wheel an axis extended, terminating in two crank handles proceeding from the axes in different directions, so that one was down when the other was up. Upon this axis was fixed another beveled-toothed wheel taking into the first.

When these wheels were turned in one direction the right-hand fore wheel of the carriage advanced and the coach turned towards the left, while when they were turned in the other direction the left-hand wheel advanced and the carriage turned towards the right.

The driving wheels were connected with the axle by means of a pair of ratchets furnished with a double set of ratchet teeth and a reversing pall. By this one wheel could be advanced or backed while the other remained stationary, or moving in a contrary direction, an arrangement necessary for turning and backing. The steersman controlled the reversing pall by connecting rods and lever.

Motion was communicated to the driving wheels by a double set of spur wheel gear, arranged to give different powers or velocities, by having both a large and a small wheel fixed on the driving as well as the driven axis. By shifting the large wheel on the driving axis into gear with the small wheel on the driven axis speed was obtained, and by shifting their relative position till the small wheel on the driving axis came into gear with the large wheel on the driven axis, power was obtained at the expense of speed. These two axes were kept at the same distance from each other by means of connecting rods, although the relative positions might be changed by the motion of the carriage on rough roads.

In August, 1833, the Heatons placed a steam drag on the road between Worcester and Birmingham. A slight accident occurred at the start, but after repairs were made the trial was a success. Attached to the engine was a stage-coach, carrying twenty pa.s.sengers, the load weighing nearly two tons. Lickey Hill was ascended, a rise of one in nine, and even one in eight in some places. Many parts of the hill were very soft, but by putting both wheels in gear they ascended to the summit, seven hundred yards in nine minutes. A company was formed in Birmingham to construct and run these carriages, subject to the condition of keeping up an average speed of ten miles an hour. A new carriage was built and tried in 1834, but after trials, the Messrs. Heaton dissolved their contract, as they were unable to do more than seven or eight miles an hour. After spending upwards of ten thousand dollars in endeavors to effect steam traveling, they retired from the field, stating that the wear and tear were excessive at ten miles an hour, and that the carriage was heavy, and wasteful in steam.

F. HILL

An English engineer, connected with the Deptford Chemical Works, Hill was among the first to be interested in steam-road locomotion. He was familiar with Hanc.o.c.k"s experiments and made a carriage of his own that was tried in 1840. He journeyed to Sevenoaks and elsewhere and ran up steep hills with the carriage, fully loaded, at twelve miles an hour, and on the level at sixteen miles an hour. He adopted the compensating gear that was invented by Richard Roberts and that by some writers has been credited to him.

To put Hill"s patents to practical use The General Steam Carriage Company was formed in 1843. The probable success of the company was based upon the belief that there was a demand for additional road accommodations in order that road locomotion should counteract the exorbitant charges made by the gigantic railway monopoly for conveying goods short distances. The company stated in its prospectus "that while they confidently believe the improved steam coach which they have engaged and propose to employ in the first instance to be the most perfect now known in England, they do not bind themselves to adhere to any particular invention, but will avail themselves of every discovery to promote steam coach conveyance."

Trial trips were made on the Windsor, Brighton, Hastings, and similar roads, and with success. Once the carriage made a trip to Hastings and back, a distance of one hundred and twenty-eight miles, in one day, half the time occupied by the stage coaches. The Mechanic"s Magazine said: "We accompanied Hill, about a year ago, in a short run up and down the hills about Blackheath, Bromley, and neighborhood; and we had again the pleasure of accompanying him in a delightful trip, on the Hastings Road, as far as Tunbridge and back. The manner in which his carriage took all the hills, both in the ascent and the descent, proved how completely every difficulty on this head had been surmounted."

In the Hill carriage, both the coach and the machinery were erected upon a strong frame mounted upon substantial springs. In the rear were the boiler, furnace, and water tanks, with a place for the engineer and fireman. In front was a coach body with seats for six inside, three on the box, and the conductor in front. The front part of the carriage was also suspended upon springs. The carriage was propelled by a pair of ten-inch cylinders and pistons, horizontally placed beneath the carriage. These acted upon two nine-inch cranks, coupled to the main axle through compensating gear; the two six-foot six-inch diameter driving wheels had the full power of the engines pa.s.sed through them. The weight of the boiler when empty was two thousand three hundred pounds, and it had a capacity of about sixty gallons of water, while one hundred gallons more were contained in the tanks. The total weight of the carriage, including water, c.o.ke, and twelve pa.s.sengers, was less than four tons. On heavy and rough roads the steam pressure was seventy pounds per square inch, but on good roads only sixty pounds. The average speed was sixteen miles an hour, but on a level twenty miles an hour was reached. As late as 1843, Hill"s carriages were running from London to Birmingham, having been in operation four or five years. Smooth in motion, they carried their pa.s.sengers comfortably, but soon went out of use.

GOODMAN

Early in the forties a small road locomotive was made by Goodman, of Southwark, London. It was worked by a pair of direct-acting engines, coupled to the crank shaft. A chain pinion on the crank shaft transmitted motion to the main axle through an endless pitch chain working over a chain wheel of larger diameter on the driving shaft. The smoke from the boiler was conducted by a flue placed beneath the carriage. The vehicle had a speed of from ten to twelve miles an hour.

NORRGBER

A correspondent of The Mechanic"s Magazine, of London, wrote in 1843: "Norrgber, of Sweden, a locksmith and an ingenious mechanic, made a steam carriage which ran between Copenhagen and Corsoer, carrying thirty pa.s.sengers, the engine being of eight horse-power."

J. K. FISHER

A small steam carriage, that in general character was like a railroad locomotive, was designed by J. K. Fisher, of New York, in 1840. It was not until 1853, however, that he went beyond this. Then he built another carriage, with driving wheels five feet in diameter, and two steam cylinders four inches in diameter, with ten-inch stroke. This carriage attained a speed of fifteen miles an hour on good pavements. During the next two years, Fisher made many trips, sometimes running twelve miles an hour without excessive wear. In his later engines he introduced several novelties, among them being parallel connections between the crank shaft and the driving axle. In the steering gear a screw was placed across the front part of the carriage carrying a nut, to which the end of an elongated reverted pole was jointed. The screw was turned by bevel gearing, one wheel being keyed to the end of the screw, and the other to the steerage rod, the opposite end of this rod having a lever placed within easy access of the footplate. Fisher"s carriages were driven by direct-acting engines, one cylinder on each side of the smoke-box.

R. W. THOMPSON

Born in Stonehaven, England, in 1822. Died, March 8, 1873.

R. W. Thompson came to the United States in early life, but returned to England and engaged in scientific experimenting and studying, and in engineering at Aberdeen and Dundee. He invented a rotary engine during this period of his life. In 1846, being then in business for himself, he conceived the idea of india-rubber tires and perfected this in 1876. In December of that year he made a small road locomotive to draw an omnibus and this was sent to the Island of Ceylon. Other road steamers of Thompson"s design were manufactured and sent to India and elsewhere.

ANTHONY BERNHARD

In 1848, a compressed-air carriage invented by Anthony Bernhard, Baron von Rathen, was built in England. It weighed three tons, and on its first trip was driven at a speed of eight miles an hour. Upon one occasion it made twelve miles an hour on a trip from Putney to Wandsworth, carrying twenty pa.s.sengers. Until near 1870, Baron von Rathen was engaged in inventing compressed-air engines.

BATTIN

In 1856, Joseph Battin, of Newark, N. J., constructed a steam carriage with a vertical boiler and oscillating engines.

RICHARD DUDGEON

A small locomotive for the common roads was built in 1857, Dy Richard Dudgeon, an engineer, of New York. It had two steam cylinders, each three inches in diameter and with sixteen-inch stroke, and drew a light carriage at ten miles an hour on gravel roads. The carriage was destroyed by fire at the New York Crystal Palace in 1858. Dudgeon is said to have afterward built another carriage, which was larger and more clumsy than the other. A few years ago this was discovered in an old barn in Locust Valley, L. I.

It was fixed up and started out and demonstrated that, old as it was, it could go at a speed of more than ten miles an hour.

LOUGH AND MESSENGER

In 1858, Messrs. Lough and Messenger, of Swindon, England, designed and erected a steam-road locomotive which for two years ran at fifteen miles an hour on level roads, and six miles an hour up grades of one in twenty.

The engine had two cylinders, each three and one-half inches in diameter and with five-inch stroke, working direct on to the crank axle. The driving wheels were three and one-half feet in diameter, and the leading wheels two feet in diameter. The vertical boiler fixed on the frame was worked at one-hundred-and-twenty-pound pressure. The tanks held forty gallons of feed water. The total weight of the locomotive was eight hundred pounds.

THOMAS RICKETT

When the revival of interest in the common-road steam locomotive began in England, about 1857, Thomas Rickett, of Castle Foundry, Buckingham, was one of the first to give attention to the subject. He built a road locomotive in 1858 for the Marquis of Stafford. This engine had two driving wheels and a steering wheel. The boiler was at the back with the steam cylinders horizontally on each side of it. Three pa.s.sengers were carried.

The carriage was steered by means of a lever connected with the fork of the front wheel. The cylinders were three inches in diameter, with nine-inch stroke; the working steam pressure was one hundred pounds per square inch. The driving wheels were three feet in diameter. The weight of the carriage when fully loaded was only three thousand pounds. On level roads the speed was about twelve miles an hour.

An account of one of the trips in 1859 was as follows in the columns of The Engineer: "Lord Stafford and party made another trip with the steam carriage from Buckingham to Wolverton. His lordship drove and steered, and although the roads were very heavy, they were not more than an hour in running the nine miles to Old Wolverton. His lordship has repeatedly said that it is guided with the greatest ease and precision. It was designed by Mr. Rickett to run ten miles an hour. One mile in five minutes has been attained, at which it was perfectly steady, the centre of gravity being not more than two feet from the ground. A few days afterwards this little engine started from Messrs. Hayes" Works, Stoney Stratford, with a party consisting of the Marquis of Stafford, Lord Alfred Paget, and two Hungarian n.o.blemen. They proceeded through the town of Stoney Stratford at a rapid pace, and after a short trip returned to the Wolverton railway station. The trip was in all respects successful, and shows beyond a doubt that steam locomotion for common roads is practicable."

Two other engines were built by Rickett, one of them for the Earl of Caithness. Some improvements were installed in this carriage, which was intended to carry three pa.s.sengers. The weight of the carriage, fully loaded, was five thousand pounds.

In this carriage, the Earl of Caithness traveled from Inverness to his seat, Borrogill Castle, within a few miles of John o" Groat"s House. He describes his trip as follows: "I may state that such a feat as going over the Ord of Caithness has never before been accomplished by steam, as I believe we rose one thousand feet in about five miles. The Ord is one of the largest and steepest hills in Scotland. The turns in the road are very sharp. All this I got over without trouble. There is, I am confident, no difficulty in driving a steam carriage on a common road. It is cheap, and on a level I got as much as nineteen miles an hour." The Earl of Caithness brought the trial to a successful result, and some expert authorities jumped to the conclusion that at once steam traveling upon the high roads of England would be availed of to a large extent; but that did not happen.

In 1864, Mr. Rickett furnished an engine for working a pa.s.senger and light goods service in Spain, intended to carry thirty pa.s.sengers up an incline of one in twelve, at ten miles an hour. The steam cylinders were eight inches in diameter, and the driving wheels four feet in diameter. The boiler would sustain a pressure of two hundred pounds. Rickett"s later engines had spur wheels; but his last engines were direct-acting. In November, 1864, he says: "The direct-acting engines mount inclines of one in ten easily; whether at eight, four, two, or one mile an hour, on inclines with five tons behind them, they stick to their work better than geared engines."

DANIEL ADAMSON

In 1858 the firm of Daniel Adamson & Co., of Dukinfield, near Manchester, England, built a common-road locomotive for a Mr. Schmidt. A multi-tubular boiler was used, two and one-half feet in diameter and five and one-half feet long, with a working pressure of one hundred and fifty pounds per square inch. The engine, which weighed five thousand six hundred pounds and was borne on three wheels, was calculated to run at eight miles an hour. A steam cylinder of six-inch diameter was attached to each side of the locomotive, and these cylinders actuated a pair of driving wheels three feet six inches in diameter.

Mr. Schmidt gave this vehicle a thorough trying out and especially raced it with several compet.i.tors. On one of these races, in 1867, with a Boulton steam carriage, the start was made from Ashton-under-Lyne, for the show ground at Old Trafford, a distance of over eight miles. Although the Adamson engine was the larger, the smaller one easily pa.s.sed it during the first mile, and kept a good lead all the way, arriving at Old Trafford under the hour.

Mr. Schmidt sent his road locomotive to the Havre Exhibition, in 1868, and a trial of its powers was made by French engineers, and M. Nicole, director of the exhibition. Mr. Schmidt conducted the engine himself, and to it was attached an omnibus containing the commissioners. The engine and carriage traversed several streets of Havre and mounted a sharp incline.

Other trips were made to several villages in the neighborhood of the exhibition, and the engine behaved very satisfactorily.

STIRLING

In a road steamer designed by Stirling, of Kilmarnock, in 1859, the five traveling wheels were mounted upon springs. A single wheel was used as a driver, and more or less weight was thrown upon this wheel. The leading and trailing wheels swiveled in concert, in opposite directions, by means of right and left hand worms and worm wheels. The carriage was thus made to move in a curve of comparatively short radius.

W. O. CARRETT

In 1860, George Salt, of Saltshire, England, employed W. O. Carrett, of the firm of Carrett, Marshall & Co., proprietors of the Gun Foundry at Leeds, to design and build a steam pleasure carriage for him. The carriage was first shown and exhibited at the Royal Show held in Leeds, 1861, and likewise at the London Exhibition, 1862. It had two steam cylinders, six inches in diameter and with eight-inch stroke. The boiler was of the locomotive multi-tubular type, two feet six inches in diameter, and five feet three inches long. It had a working pressure of one hundred and fifty pounds per square inch, the test pressure being three hundred pounds. The locomotive was mounted upon two driving wheels, each four feet in diameter, made of steel, and a leading wheel was three feet in diameter. Seats were provided for nine persons, including the steerer and the fireman. The traveling speed was fifteen miles an hour; and the weight of the carriage, fully loaded, was five tons. Motion was communicated from the crank shaft to the driving axle through spur gearing.

© 2024 www.topnovel.cc