The engines used are Rolls Royce Renaults, although in one instance a 75 horse-power Rolls Royce Hawk engine was fitted, which a.s.sisted in making an exceedingly useful ship.
S.S. ARMSTRONG WHITWORTH
The car designed by Messrs. Armstrong Whitworth is of the tractor type and is in all ways generally similar to the B.E. 2C. The single-skid landing cha.s.sis with buffers is the outstanding difference. These cars had to be rigged to 70,000 cubic feet envelopes otherwise the margin of lift was decidedly small. A water-cooled 100 horse-power Green engine propelled the ship, and a new feature was the disposition of petrol, which was carried in two aluminium tanks slung from the envelope and fed through flexible pipes to a two-way c.o.c.k and thence to the carburettors. These tanks, which were supported in a fabric sling, showed a saving in weight of 100 lb. compared with those fitted in the B.E. 2C.
For over two years these three types of S.S. ships performed a great part of our airship patrol and gave most excellent results.
Owing to the constant patrol which was maintained whenever weather conditions were suitable, the hostile submarine hardly dared to show her periscope in the waters which were under observation. In addition to this, practically the whole of the airship personnel now filling the higher positions, such as Captains of Rigids and North Seas, graduated as pilots in this type of airship. From these they pa.s.sed to the Coastal and onwards to the larger vessels.
As far as is known the height record for a British airship is still held by an S.S.B.E. 2C, one of these ships reaching the alt.i.tude of 10,300 feet in the summer of 1916.
The Maurice Farman previously mentioned as being fitted with the Hawk engine, carried out a patrol one day of 18 hours 20 minutes. In the summer of 1916 one of the Armstrong ships was rigged to an envelope doped black and sent over to France. While there she carried out certain operations at night which were attended with success, proving that under certain circ.u.mstances the airship can be of value in operating with the military forces over land.
S.S.P.
In 1916 the design was commenced for an S.S. ship which should have a more comfortable car and be not merely an adaptation of an aeroplane body. These cars, which were of rectangular shape with a blunt nose, were fitted with a single landing skid aft, and contained seats for three persons.
The engine, a 100 horse-power water-cooled Green, was mounted on bearers aft and drove a four-bladed pusher propeller. The petrol was carried in aluminium tanks attached by fabric slings to the axis of the envelope.
Six of these ships were completed in the spring of 1917 and were quite satisfactory, but owing to the success achieved by the experimental S.S. Zero it was decided to make this the standard type of S.S. ship, and with the completion of the sixth the programme of the S.S.P"s was brought to a close.
These ships enjoyed more than, perhaps, was a fair share of misfortune, one was wrecked on proceeding to its patrol station and was found to be beyond repair, and another was lost in a snowstorm in the far north.
The remainder, fitted at a later date with 75 horse-power Rolls Royce engines, proved to be a most valuable a.s.set to our fleet of small airships.
S.S. ZERO
The original S.S. Zero was built at a south-coast station by Air Service labour, and to the design of three officers stationed there.
The design of the car shows a radical departure from anything that had been previously attempted, and as a model an ordinary boat was taken.
In shape it is as nearly streamline as is practicable, having a keel and ribs of wood with curved longitudinal members, the strut ends being housed in steel sockets. The whole frame is braced with piano wire set diagonally between the struts. The car is floored from end to end, and the sides are enclosed with 8-ply wood covered with fabric.
Accommodation is provided for a wireless telegraphy operator, who is also a gunner, his compartment being situated forward, amidships is the pilot and abaft this seat is a compartment for the engineer.
The engine selected was the 75 horse-power water-cooled Rolls Royce, it being considered to be the most efficient for the purpose. The engine is mounted upon bearers above the level of the top of the car, and drives a four-bladed pusher propeller.
The car is suspended from an envelope of 70,000 cubic feet capacity, and the system of rigging is similar to that in use on all S.S. ships.
The petrol is carried in aluminium tanks slung on the axis of the envelope, identically with the system in use on the S.S.P"s. The usual elevator planes are adopted with a single long rudder plane.
The speed of the Zero is about 45 miles per hour and the ship has a theoretical endurance of seventeen hours; but this has been largely exceeded in practice.
The original ship proved an immediate success, and a large number was shortly afterwards ordered.
As time went on the stations expanded and sub-stations were added, while the Zero airship was turned out as fast as it could be built, until upwards of seventy had been commissioned. The work these ships were capable of exceeded the most sanguine expectations. Owing to their greater stability in flight and longer hours of endurance, they flew in weather never previously attempted by the earlier ships. With experience gained it was shown that a large fleet of airships of comparatively small capacity is of far more value for an anti-submarine campaign than a lesser fleet of ships of infinitely greater capacity.
The average length of patrol was eight hours, but some wonderful duration flights were accomplished in the summer of 1918, as the following figures will show. The record is held by S.S.Z. 39, with 50 hours 55 minutes; another is 30 hours 20 minutes; while three more vary from 25 1/2 hours to 26 1/4. Although small, the Zero airship has been one of the successes of the war, and we can claim proudly that she is entirely a British product.
S.S. TWIN
During the year 1917, designs were submitted for a twin-engined S.S.
airship, the idea being to render the small type of airship less liable to loss from engine failure. The first design proved to be a failure, but the second was considered more promising, and several were built.
Its capacity is 100,000 cubic feet, with a length of 164 feet 6 inches, and the greatest diameter 32 feet.
The car is built to carry five, with the engines disposed on gantries on the port and starboard side, driving pusher propellers. This type, although in the experimental stage, is being persevered with, and the intention is that it will gradually supplant the other S.S. cla.s.ses.
It is calculated that it will equal if not surpa.s.s the C Star ship in endurance, besides being easier to handle and certainly cheaper to build.
"COASTAL" AND "C STAR" AIRSHIPS
The urgent need for a non-rigid airship to carry out anti-submarine patrol having been satisfied for the time with the production of the S.S. B.E. 2C type, the airship designers of the Royal Naval Air Service turned their attention to the production of an airship which would have greater lift and speed than the S.S. type, and, consequently, an augmented radius of action, together with a higher degree of reliability. As the name "Coastal" or "Coast Patrol" implies, this ship was intended to carry out extended sea patrols.
To obtain these main requirements the capacity of the envelope for this type was fixed at 170,000 cubic feet, as compared with the 60,000 cubic feet and, later, the 70,000 cubic feet envelopes adopted for the S.S.
ships. Greater speed was aimed at by fitting two engines of 150 horse-power each, and it was hoped that the chances of loss owing to engine failure would be considerably minimized.
The Astra-Torres type of envelope, with its system of internal rigging, was selected for this cla.s.s of airship; in the original ship the envelope used was that manufactured by the French Astra-Torres Company, and to which it had been intended to rig a small enclosed car. The ship in question was to be known as No. 10. This plan was, however, departed from, and the car was subsequently rigged to the envelope of the Eta, and a special car was designed and constructed for the original Coastal. Coastal airship No. 1 was commissioned towards the end of 1915 and was retained solely for experimental and training purposes. Approximately thirty of these airships were constructed during the year 1916, and were allocated to the various stations for patrol duties.
The work carried out by these ships during the two and a half years in which they were in commission, is worthy of the highest commendation.
Before the advent of later and more reliable ships, the bulk of anti-submarine patrol on the east coast and south-west coast of England was maintained by the Coastal. On the east coast, with the prevailing westerly and south-westerly winds, these airships had many long and arduous voyages on their return from patrol, and in the bitterness of winter their difficulties were increased ten-fold. To the whole-hearted efforts of Coastal pilots and crews is due, to a great extent, the recognition which somewhat tardily was granted to the Airship Service.
The envelope of the Coastal airship has been shown to be of 170,000 cubic feet capacity. It is trilobe in section to employ the Astra-Torres system of internal and external rigging. The great feature of this principle is that it enables the car to be slung much closer to the envelope than would be possible with the tangential system on an envelope of this size. As a natural consequence there is far less head resistance, owing to the much shorter rigging, between the envelope and the car.
The shape of the envelope is not all that could have been desired, for it is by no means a true streamline, but has the same cross section for the greater part of its length, which tapers at either end to a point which is slightly more accentuated aft. Owing to the shape, these ships, in the early days until experience had been gained, were extremely difficult to handle, both on the landing ground and also in the air. They were extremely unstable both in a vertical and horizontal plane, and were slow in answering to their rudders and elevators.
The envelope is composed of rubber-proofed fabric doped to hold the gas and resist the effects of weather. Four ballonets are situated in the envelope, two in each of the lower lobes, air being conveyed to them by means of a fabric air duct, which is parallel to the longitudinal centre line of the envelope, with transverse ducts connecting each pair of ballonets. In earlier types of the Coastal, the air scoop supplying air to the air duct was fitted in the slip stream of the forward engine, but later this was fitted aft of the after engine.
Six valves in all are used, four air valves, one fitted to each ballonet, and two gas valves. These are situated well aft, one to each of the lower lobes, and are fitted on either side of the rudder plane.
A top valve is dispensed with because in practice when an Astra-Torres envelope loses shape, the tendency is for the tail to be pulled upwards by the rigging, with the result that the two gas valves always remain operative.
Crabpots and non-return valves are employed in a similar manner to S.S.
airships.
The Astra-Torres system of internal rigging must now be described in some detail. The envelope is made up of three longitudinal lobes, one above and two below, which when viewed end on gives it a trefoil appearance. The internal rigging is attached to the ridges formed on either side of the upper lobe, where it meets the two side lobes. From here it forms a V, when viewed cross sectionally, converging at he ridge formed by the two lobes on the underside of the envelope which is known as the lower ridge.
To the whole length of the top ridges are attached the internal rigging girdles and also the lacing girdles to which are secured the top and side curtains. These curtains are composed of ordinary unproofed fabric and their object is to make the envelope keep its trilobe shape.
They do not, however, divide the ship into separate gas compartments.
The rigging girdle consists of a number of fabric scallops through which run strands of Italian hemp. These strands, of which there are a large number, are led towards the bottom ridge, where they are drawn together and secured to a rigging sector. To these sectors the main external rigging cables are attached. The diagram shows better than any description this rigging system.
Ten main suspensions are incorporated in the Coastal envelope, of which three take the handling guys, the remaining seven support the weight of the car.
The horizontal fins with the elevator flaps, and the vertical fin with the rudder flap, are fixed to the ridges of the envelope.
The car was evolved in the first instance by cutting away the tail portion of two Avro seaplane fuselages and joining the forward portions end on, the resulting car, therefore, had engines at either end with seating accommodation for four. The landing cha.s.sis were altered, single skids being subst.i.tuted for the wider landing cha.s.sis employed in the seaplane. The car consists of four longerons with struts vertical and cross, and stiffened with vertical and cross bracing wires. The sides are covered with fabric and the flooring and fairing on the top of the car are composed of three-ply wood. In the later cars five seats were provided to enable a second officer to be carried.
The engines are mounted on bearers at each end of the car, and the petrol and oil tanks were originally placed adjoining the engines in the car. At a later date various methods of carrying the petrol tanks were adopted, in some cases they were slung from the envelope and in others mounted on bearers above the engines.
Wireless telegraphy is fitted as is the case with all airships. In the Coastal a gun is mounted on the top of the envelope, which is reached by a climbing shaft pa.s.sing through the envelope, another mounting being provided on the car itself.
Bombs are also carried on frames attached to the car. Sunbeam engines originally supplied the motive power, but at a later date a 220 horse-power Renault was fitted aft and a 100 horse-power, Berliet forward. With the greater engine power the ship"s capabilities were considerably increased.