The various forms of harrows and cultivators are of the greatest importance in the development of dry-farming. Unless a proper mulch can be kept over the soil during the fallow season, and as far as possible during the growing season, first-cla.s.s crops cannot be fully respected.

The roller is occasionally used in dry-farming, especially in the uplands of the Columbia Basin. It is a somewhat dangerous implement to use where water conservation is important, since the packing resulting from the roller tends to draw water upward from the lower soil layers to be evaporated into the air. Wherever the roller is used, therefore, it should be followed immediately by a harrow. It is valuable chiefly in the localities where the soil is very loose and light and needs packing around the seeds to permit perfect germination.

Subsurface packing

The subsurface packer invented by Campbell is [shown in Figure 83--not shown--ed.]. The wheels of this machine eighteen inches in diameter, with rims one inch thick at the inner part, beveled two and a half inches to a sharp outer edge, are placed on a shaft, five inches apart. In practice about five hundred pounds of weight are added.

This machine, according to Campbell, crowds a one-inch wedge into every five inches of soil with a lateral and a downward pressure and thus packs firmly the soil near the bottom of the plow-furrow.



Subsurface packing aims to establish full capillary connection between the plowed upper soil and the undisturbed lower soil-layer; to bring the moist soil in close contact with the straw or organic litter plowed under and thus to hasten decomposition, and to provide a firm seed bed.

The subsurface packer probably has some value where the plowed soil containing the stubble is somewhat loose; or on soils which do not permit of a rapid decay of stubble and other organic matter that may be plowed under from season to season. On such soils the packing tendency of the subsurface packer may help prevent loss of soil water, and may also a.s.sist in furnishing a more uniform medium through which plant roots may force their way. For all these purposes, the disk is usually equally efficient.

Sowing

It has already been indicated in previous chapters that proper sowing is one of the most important operations of the dry-farm, quite comparable in importance with plowing or the maintaining of a mulch for retaining soil-moisture. The old-fashioned method of broadcasting has absolutely no place on a dry-farm. The success of dry-farming depends entirely upon the control that the farmer has of all the operations of the farm. By broadcasting, neither the quant.i.ty of seed used nor the manner of placing the seed in the ground can be regulated. Drill culture, therefore, introduced by Jethro Tull two hundred years ago, which gives the farmer full control over the process of seeding, is the only system to be used.

The numerous seed drills on the market all employ the same principles. Their variations are few and simple. In all seed drills the seed is forced into tubes so placed as to enable the seed to fall into the furrows in the ground. The drills themselves are distinguished almost wholly by the type of the furrow opener and the covering devices which are used. The seed furrow is opened either by a small hoe or a so-called shoe or disk. At the present time it appears that the single disk is the coming method of opening the seed furrow and that the other methods will gradually disappear. As the seed is dropped into the furrow thus made it is covered by some device at the rear of the machine. One of the oldest methods as well as one of the most satisfactory is a series of chains dragging behind the drill and covering the furrow quite completely. It is, however, very desirable that the soil should be pressed carefully around the seed so that germination may begin with the least difficulty whenever the temperature conditions are right. Most of the drills of the day are, therefore, provided with large light wheels, one for each furrow, which press lightly upon the soil and force the soil into intimate contact with the seed The weakness of such an arrangement is that the soil along the drill furrows is left somewhat packed, which leads to a ready escape of the soil-moisture.

Many of the drills are so arranged that press wheels may be used at the pleasure of the farmer. The seed drill is already a very useful implement and is rapidly being made to meet the special requirements of the dry-farmer. Corn planters are used almost exclusively on dry-farms where corn is the leading crop. In principle they are very much the same as the press drills. Potatoes are also generally planted by machinery. Wherever seeding machinery has been constructed based upon the principles of dry-farming, it is a very advantageous adjunct to the dry-farm.

Harvesting

The immense areas of dry-farms are harvested almost wholly by the most modern machinery. For grain, the harvester is used almost exclusively in the districts where the header cannot be used, but wherever conditions permit, the header is and should be used. It has been explained in previous chapters how valuable the tall header stubble is when plowed under as a means of maintaining the fertility of the soil. Besides, there is an ease in handling the header which is not known with the harvester. There are times when the header leads to some waste as, for instance, when the wheat is very low and heads are missed as the machine pa.s.ses over the ground. In many sections of the dry-farm territory the climatic conditions are such that the wheat cures perfectly while still standing. In such places the combined harvester and thresher is used. The header cuts off the heads of the grain, which are pa.s.sed up into the thresher, and bags filled with threshed grain are dropped along the path of the machine, while the straw is scattered over the ground. Wherever such a machine can be used, it has been found to be economical and satisfactory. Of recent years corn stalks have been used to better advantage than in the past, for not far from one half of the feeding value of the corn crop is in the stalks, which up to a few years ago were very largely wasted. Corn harvesters are likewise on the market and are quite generally used. It was manifestly impossible on large places to harvest corn by hand and large corn harvesters have, therefore, been made for this purpose.

Steam and other motive power

Recently numerous persons have suggested that the expense of running a dry-farm could be materially reduced by using some motive power other than horses. Steam, gasoline, and electricity have all been suggested. The steam traction engine is already a fairly well-developed machine and it has been used for plowing purposes on many dry-farms in nearly all the sections of the dry-farm territory.

Unfortunately, up to the present it has not shown itself to be very satisfactory. First of all it is to be remembered that the principles of dry-farming require that the topsoil be kept very loose and spongy. The great traction engines have very wide wheels of such tremendous weight that they press down the soil very compactly along their path and in that way defeat one of the important purposes of tillage. Another objection to them is that at present their construction is such as to result in continual breakages. While these breakages in themselves are small and inexpensive, they mean the cessation of all farming operations during the hour or day required for repairs. A large crew of men is thus left more or less idle, to the serious injury of the work and to the great expense of the owner. Undoubtedly, the traction engine has a place in dry-farming, but it has not yet been perfected to such a degree as to make it satisfactory. On heavy soils it is much more useful than on light soils. When the traction engine works satisfactorily, plowing may be done at a cost considerably lower than when horses are employed.

In England, Germany, and other European countries some of the difficulties connected with plowing have been overcome by using two engines on the two opposite sides of a field. These engines move synchronously together and, by means of large cables, plows, harrows, or seeders, are pulled back and forth over the field. This method seems to give good satisfaction on many large estates of the old world. Macdonald reports that such a system is in successful operation in the Transvaal in South Africa and is doing work there at a very knew cost. The large initial cost of such a system will, of course, prohibit its use except on the very large farms that are being established in the dry-farm territory.

Gasoline engines are also being tried out, but up to date they have not shown themselves as possessing superior advantages over the steam engines. The two objections to them are the same as to the steam engine: first, their great weight, which compresses in a dangerous degree the topsoil and, secondly, the frequent breakages, which make the operation slow and expensive.

Over a great part of the West, water power is very abundant and the suggestion has been made that the electric energy which can be developed by means of water power could be used in the cultural operations of the dry-farm. With the development of the trolley car which does not run on rails it would not seem impossible that in favorable localities electricity could be made to serve the farmer in the mechanical tillage of the dry-farm.

The subst.i.tution of steam and other energy for horse power is yet in the future. Undoubtedly, it will come, but only as improvements are made in the machines. There is here also a great field for being of high service to the farmers who are attempting to reclaim the great deserts of the world. As stated at the beginning of this chapter, dry-farming would probably have been an impossibilityfifty or a hundred years ago because of the absence of suitable machinery. The future of dry-farming rests almost wholly, so far as its profits are concerned, upon the development of new and more suitable machinery for the tillage of the soil in accordance with the established principles of dry-farming.

Finally, the recommendations made by Merrill may here be inserted. A dry-farmer for best work should be supplied with the following implements in addition to the necessary wagons and hand tools:--

One Plow.

One Disk.

One Smoothing Harrow.

One Drill Seeder.

One Harvester or Header.

One Mowing Machine.

CHAPTER XVI

IRRIGATION AND DRY-FARMING

Irrigation-farming and dry-farming are both systems of agriculture devised for the reclamation of countries that ordinarily receive an annual rainfall of twenty inches or less. Irrigation-farming cannot of itself reclaim the arid regions of the world, for the available water supply of arid countries when it shall have been conserved in the best possible way cannot be made to irrigate more than one fifth of the thirsty land. This means that under the highest possible development of irrigation, at least in the United States, there will be five or six acres of unirrigated or dry-farm land for every acre of irrigated land. Irrigation development cannot possibly, therefore, render the dry-farm movement valueless. On the other hand, dry-farming is furthered by the development of irrigation farming, for both these systems of agriculture are characterized by advantages that make irrigation and dry-farming supplementary to each other in the successful development of any arid region.

Under irrigation, smaller areas need to be cultivated for the same crop returns, for it has been amply demonstrated that the acre yields under proper irrigation are very much larger than the best yields under the most careful system of dry-farming. Secondly, a greater variety of crops may be grown on the irrigated farm than on the dry-farm. As has already been shown in this volume, only certain drouth resistant crops can be grown profitably upon dry-farms, and these must be grown under the methods of extensive farming. The longer growing crops, including trees, succulent vegetables, and a variety of small fruits, have not as yet been made to yield profitably under arid conditions without the artificial application of water. Further, the irrigation-farmer is not largely dependent upon the weather and, therefore, carries on this work with a feeling of greater security. Of course, it is true that the dry years affect the flow of water in the ca.n.a.ls and that the frequent breaking of dams and ca.n.a.l walls leaves the farmer helpless in the face of the blistering heat. Yet, all in all, a greater feeling of security is possessed by the irrigation farmer than by the dry-farmer.

Most important, however, are the temperamental differences in men which make some desirous of giving themselves to the cultivation of a small area of irrigated land under intensive conditions and others to dry-farming under extensive conditions. In fact, it is being observed in the arid region that men, because of their temperamental differences, are gradually separating into the two cla.s.ses of irrigation-farmers and dry-farmers. The dry-farms of necessity cover much larger areas than the irrigated farms. The land is cheaper and the crops are smaller. The methods to be applied are those of extensive farming. The profits on the investment also appear to be somewhat larger. The very necessity of pitting intellect against the fierceness of the drouth appears to have attracted many-men to the dry-farms. Gradually the certainty of producing crops on dry-farms from season to season is becoming established, and the essential difference between the two kinds of farming in the arid districts will then he the difference between intensive and extensive methods of culture. Men will be attracted to one or other of these systems of agriculture according to their personal inclinations.

The scarcity of water

For the development of a well-rounded commonwealth in an arid region it is, of course, indispensable that irrigation be practiced, for dry-farming of itself will find it difficult to build up populous cities and to supply the great variety of crops demanded by the modern family. In fact, one of the great problems before those engaged in the development of dry-farming at present is the development of homesteads in the dry-farms. A homestead is possible only where there is a sufficient amount of free water available for household and stock purposes. In the portion of the dry-farm territory where the rainfall approximates twenty inches, this problem is not so very difficult, since ground water may be reached easily. In the drier portions, however, where the rainfall is between ten and fifteen inches, the problem is much more important.

The conditions that bring the district under the dry-farm designation imply a scarcity of water. On few dry-farms is water available for the needs of the household and the barns. In the Rocky Mountain states numerous dry-farms have been developed from seven to fifteen miles from the nearest source of water, and the main expense of developing these farms has been the hauling of water to the farms to supply the needs of the men and beasts at work on them.

Naturally, it is impossible to establish homesteads on the dry-farms unless at least a small supply of water is available; and dry-farming will never he what it might be unless happy homes can be established upon the farms in the arid regions that grow crops without irrigation. To make a dry-farm homestead possible enough water must be available, first of all, to supply the culinary needs of the household. This of itself is not large and, as will be shown hereafter, may in most cases be obtained. However, in order that the family may possess proper comforts, there should be around the homestead trees, and shrubs, and gra.s.ses, and the family garden. To secure these things a certain amount of irrigation water is required. It may be added that dry-farms on which such homesteads are found as a result of the existence of a small supply of irrigation water are much more valuable, in case of sale, than equally good farms without the possibility of maintaining homesteads. Moreover, the distinct value of irrigation in producing a large acre yield makes it desirable for the farmer to use all the water at his disposal for irrigation purposes. No available water should be allowed to flow away unused.

Available surface water

The sources of water for dry-farms fall readily into cla.s.ses: surface waters and subterranean waters. The surface waters, wherever they may be obtained, are generally the most profitable. The simplest method of obtaining water in an irrigated region is from some irrigation ca.n.a.l. In certain districts of the intermountain region where the dry farms lie above the irrigation ca.n.a.ls and the irrigated lands below, it is comparatively easy for the farmers to secure a small but sufficient amount of water from the ca.n.a.l by the use of some pumping device that will force the water through the pipes to the homestead. The dry-farm area that may be so supplied by irrigation ca.n.a.ls is, however, very limited and is not to be considered seriously in connection with the problem.

A much more important method, especially in the mountainous districts, is the utilization of the springs that occur in great numbers over the whole dry-farm territory. Sometimes these springs are very small indeed, and often, after development by tunneling into the side of the hill, yield only a trifling flow. Yet, when this water is piped to the homestead and allowed to acc.u.mulate in small reservoirs or cisterns, it may be amply sufficient for the needs of the family and the live stock, besides having a surplus for the maintenance of the lawn, the shade trees, and the family garden.

Many dry-farmers in the intermountain country have piped water seven or eight miles from small springs that were considered practically worthless and thereby have formed the foundations for small village communities.

Of perhaps equal importance with the utilization of the naturally occurring springs is the proper conservation of the flood waters. As has been stated before, arid conditions allow a very large loss of the natural precipitation as run-off. The numerous gullies that characterize so many parts of the dry-farm territory are evidences of the number and vigor of the flood waters. The construction of small reservoirs in proper places for the purpose of catching the flood waters will usually enable the farmer to supply himself with all the water needed for the homestead. Such reservoirs may already be found in great numbers scattered over the whole western America.

As dry-farming increases their numbers will also increase.

When neither ca.n.a.ls, nor springs, nor flood waters are available for the supply of water, it is yet possible to obtain a limited supply by so arranging the roof gutters on the farm buildings that all the water that falls on the roofs is conducted through the spouts into carefully protected cisterns or reservoirs. A house thirty by thirty feet, the roof of which is so constructed that all that water that falls upon it is carried into a cistern will yield annually under a a rainfall of fifteen inches a maximum amount of water equivalent to about 8800 gallons. Allowing for the unavoidable waste due to evaporation, this will yield enough to supply a household and some live stock with the necessary water. In extreme cases this has been found to be a very satisfactory practice, though it is the one to be resorted to only in case no other method is available.

It is indispensable that some reservoir be provided to hold the surface water that may be obtained until the time it may be needed.

The water coming constantly from a spring in summer should be applied to crops only at certain definite seasons of the year. The flood waters usually come at a time when plant growth is not active and irrigation is not needed.

The rainfall also in many districts comes most largely at seasons of no or little plant growth. Reservoirs must, therefore, be provided for the storing of the water until the periods when it is demanded by crops. Cement-lined cisterns are quite common, and in many places cement reservoirs have been found profitable. In other places the occurrence of impervious clay has made possible the establishment and construction of cheap reservoirs. The skillful and permanent construction of reservoirs is a very important subject. Reservoir building should be undertaken only after a careful study of the prevailing conditions and under the advice of the state or government officials having such work in charge. In general, the first cost of small reservoirs is usually somewhat high, but in view of their permanent service and the value of the water to the dry-farm they pay a very handsome interest on the investment. It is always a mistake for the dry-farmer to postpone the construction of a reservoir for the storing of the small quant.i.ties of water that he may possess, in order to save a little money. Perhaps the greatest objection to the use of the reservoirs is not their relatively high cost, but the fact that since they are usually small and the water shallow, too large a proportion of the water, even under favorable conditions, is lost by evaporation. It is ordinarily a.s.sumed that one half of the water stored in small reservoirs throughout the year is lost by direct evaporation.

Available subterranean water

Where surface waters are not readily available, the subterranean water is of first importance. It is generally known that, underlying the earth"s surface at various depths, there is a large quant.i.ty of free water. Those living in humid climates often overestimate the amount of water so held in the earth"s crust, and it is probably true that those living in arid regions underestimate the quant.i.ty of water so found. The fact of the matter seems to be that free water is found everywhere under the earth"s surface. Those familiar with the arid West have frequently been surprised by the frequency with which water has been found at comparatively shallow depths in the most desert locations. Various estimates have been made as to the quant.i.ty of underlying water. The latest calculation and perhaps the most reliable is that made by Fuller, who, after a careful a.n.a.lysis of the factors involved, concludes that the total free water held in the earth"s crust is equivalent to a uniform sheet of water over the entire surface of the earth ninety-six feet in depth. A quant.i.ty of water thus held would be equivalent to about one hundredth part of the whole volume of the ocean. Even though the thickness of the water sheet under arid soils is only half this figure there is an amount, if it could be reached, that would make possible the establishment of homesteads over the whole dry-farm territory. One of the main efforts of the day is the determination of the occurrence of the subterranean waters in the dry-farm territory.

Ordinary dug wells frequently reach water at comparatively shallow depths. Over the cultivated Utah deserts water is often found at a depth of twenty-five or thirty feet, though many wells dug to a depth of one hundred and seventy-five and two hundred feet have failed to reach water. It may be remarked in this connection that even where the distance to the water is small, the piped well has been found to be superior to the dug well. Usually, water is obtained in the dry-farm territory by driving pipes to comparatively great depths, ranging from one hundred feet to over one thousand feet. At such depths water is nearly always found. Often the geological conditions are such as to force the water up above the surface as artesian wells, though more often the pressure is simply sufficient to bring the water within easy pumping distance of the surface. In connection with this subject it must be said that many of the subterranean waters of the dry-farm territory are of a saline character. The amount of substances held in solution varies largely, but frequently is far above the limits of safety for the use of man or beast or plants. The dry-farmer who secures a well of this type should, therefore, be careful to have a proper examination made of the const.i.tuents of the water before ordinary use is made of it.

Now, as has been said, the utilization of the subterranean waters of the land is one of the living problems of dry-farming. The tracing out of this layer of water is very difficult to accomplish and cannot be done by individuals. It is a work that properly belongs to the state and national government. The state of Utah, which was the pioneer in appropriating money for dry-farm experiments, also led the way in appropriating money for the securing of water for the dry-farms from subterranean sources. The world has been progressing in Utah since 1905, and water has been secured in the most unpromising localities. The most remarkable instance is perhaps the finding of water at a depth of about five hundred and fifty feet in the unusually dry Dog Valley located some fifteen miles west of Nephi.

Pumping water

The use of small quant.i.ties of water on the dry-farms carries with it, in most cases, the use of small pumping plants to store and to distribute the water properly. Especially, whenever subterranean sources of water are used and the water pressure is not sufficient to throw the water above the ground, pumping must be resorted to.

© 2024 www.topnovel.cc