The relative weights of the roots and the stems and the leaves do not alone show the large quant.i.ty of roots; the total lengths of the roots are even more striking. The German investigator, n.o.bbe, in a laborious experiment conducted about 1867, added the lengths of all the fine roots from each of various plants. He found that the total length of roots, that is, the sum of the lengths of all the roots, of one wheat plant was about 268 feet, and that the total length of the roots of one plant of rye was about 385 feet. King, of Wisconsin, estimates that in one of his experiments, one corn plant produced in the upper 3 feet of soil 1452 feet of roots. These surprisingly large numbers indicate with emphasis the thoroughness with which the roots invade the soil.
Depth of root penetration
The earlier root studies did not pretend to determine the depth to which roots actually penetrate the earth. In recent years, however, a number of carefully conducted experiments were made by the New York, Wisconsin, Minnesota, Kansas, Colorado, and especially the North Dakota stations to obtain accurate information concerning the depth to which agricultural plants penetrate soils. It is somewhat regrettable, for the purpose of dry-farming, that these states, with the exception of Colorado, are all in the humid or sub-humid area of the United States. Nevertheless, the conclusions drawn from the work are such that they may be safely applied in the development of the principles of dry-farming.
There is a general belief among farmers that the roots of all cultivated crops are very near the surface and that few reach a greater depth than one or two feet. The first striking result of the American investigations was that every crop, without exception, penetrates the soil deeper than was thought possible in earlier days. For example, it was found that corn roots penetrated fully four feet into the ground and that they fully occupied all of the soil to that depth.
On deeper and somewhat drier soils, corn roots went down as far as eight feet. The roots of the small grains,--wheat, oats, barley,--penetrated the soil from four to eight or ten feet. Various perennial gra.s.ses rooted to a depth of four feet the first year; the next year, five and one half feet; no determinations were made of the depth of the roots in later years, though it had undoubtedly increased. Alfalfa was the deepest rooted of all the crops studied by the American stations. Potato roots filled the soil fully to a depth of three feet; sugar beets to a depth of nearly four feet.
Sugar Beet Roots
In every case, under conditions prevailing in the experiments, and which did not have in mind the forcing of the roots down to extraordinary depths, it seemed that the normal depth of the roots of ordinary field crops was from three to eight feet. Sub-soiling and deep plowing enable the roots to go deeper into the soil. This work has been confirmed in ordinary experience until there can be little question about the accuracy of the results.
Almost all of these results were obtained in humid climates on humid soils, somewhat shallow, and underlain by a more or less infertile subsoil. In fact, they were obtained under conditions really unfavorable to plant growth. It has been explained in Chapter V that soils formed under arid or semiarid conditions are uniformly deep and porous and that the fertility of the subsoil is, in most cases, practically as great as of the topsoil. There is, therefore, in arid soils, an excellent opportunity for a comparatively easy penetration of the roots to great depths and, because of the available fertility, a chance throughout the whole of the subsoil for ample root development. Moreover, the porous condition of the soil permits the entrance of air, which helps to purify the soil atmosphere and thereby to make the conditions more favorable for root development.
Consequently it is to be expected that, in arid regions, roots will ordinarily go to a much greater depth than in humid regions.
It is further to be remembered that roots are in constant search of food and water and are likely to develop in the directions where there is the greatest abundance of these materials. Under systems of dry-farming the soil water is stored more or less uniformly to considerable depths--ten feet or more--and in most cases the percentage of moisture in the spring and summer is as large or larger some feet below the surface than in the upper two feet. The tendency of the root is, then, to move downward to depths where there is a larger supply of water. Especially is this tendency increased by the available soil fertility found throughout the whole depth of the soil ma.s.s.
It has been argued that in many of the irrigated sections the roots do not penetrate the soil to great depths. This is true, because by the present wasteful methods of irrigation the plant receives so much water at such untimely seasons that the roots acquire the habit of feeding very near the surface where the water is so lavishly applied. This means not only that the plant suffers more greatly in times of drouth, but that, since the feeding ground of the roots is smaller, the crop is likely to be small.
These deductions as to the depth to which plant roots will penetrate the soil in arid regions are fully corroborated by experiments and general observation. The workers of the Utah Station have repeatedly observed plant roots on dry-farms to a depth of ten feet. Lucerne roots from thirty to fifty feet in length are frequently exposed in the gullies formed by the mountain torrents. Roots of trees, similarly, go down to great depths. Hilgard observes that he has found roots of grapevines at a depth of twenty-two feet below the surface, and quotes Aughey as having found roots of the native Shepherdia in Nebraska to a depth of fifty feet. Hilgard further declares that in California fibrous-rooted plants, such as wheat and barley, may descend in sandy soils from four to seven feet. Orchard trees in the arid West, grown properly, are similarly observed to send their roots down to great depths. In fact, it has become a custom in many arid regions where the soils are easily penetrable to say that the root system of a tree corresponds in extent and branching to the part of the tree above ground.
Now, it is to be observed that, generally, plants grown in dry climates send their roots straight down into the soil; whereas in humid climates, where the topsoil is quite moist and the subsoil is hard, roots branch out laterally and fill the upper foot or two of the soil. A great deal has been said and written about the danger of deep cultivation, because it tends to injure the roots that feed near the surface. However true this may be in humid countries, it is not vital in the districts primarily interested in dry-farming; and it is doubtful if the objection is as valid in humid countries as is often declared. True, deep cultivation, especially when performed near the plant or tree, destroys the surface-feeding roots, but this only tends to compel the deeper lying roots to make better use of the subsoil.
When, as in arid regions, the subsoil is fertile and furnishes a sufficient amount of water, destroying the surface roots is no handicap whatever. On the contrary, in times of drouth, the deep-lying roots feed and drink at their leisure far from the hot sun or withering winds, and the plants survive and arrive at rich maturity, while the plants with shallow roots wither and die or are so seriously injured as to produce an inferior crop. Therefore, in the system of dry-farming as developed in this volume, it must be understood that so far as the farmer has power, the roots must be driven downward into the soil, and that no injury needs to be apprehended from deep and vigorous cultivation.
One of the chief attempts of the dry-farmer must be to see to it that the plants root deeply. This can be done only by preparing the right kind of seed-bed and by having the soil in its lower depths well-stored with moisture, so that the plants may be invited to descend. For that reason, an excess of moisture in the upper soil when the young plants are rooting is really an injury to them.
CHAPTER VII
STORING WATER IN THE SOIL
The large amount of water required for the production of plant substance is taken from the soil by the roots. Leaves and stems do not absorb appreciable quant.i.ties of water. The scanty rainfall of dry-farm districts or the more abundant precipitation of humid regions must, therefore, be made to enter the soil in such a manner as to be readily available as soil-moisture to the roots at the right periods of plant growth.
In humid countries, the rain that falls during the growing season is looked upon, and very properly, as the really effective factor in the production of large crops. The root systems of plants grown under such humid conditions are near the surface, ready to absorb immediately the rains that fall, even if they do not soak deeply into the soil. As has been shown in Chapter IV, it is only over a small portion of the dry-farm territory that the bulk of the scanty precipitation occurs during the growing season. Over a large portion of the arid and semiarid region the summers are almost rainless and the bulk of the precipitation comes in the winter, late fall, or early spring when plants are not growing. If the rains that fall during the growing season are indispensable in crop production, the possible area to be reclaimed by dry-farming will be greatly limited. Even when much of the total precipitation comes in summer, the amount in dry-farm districts is seldom sufficient for the proper maturing of crops. In fact, successful dry-farming depends chiefly upon the success with which the rains that fall during any season of the year may be stored and kept in the soil until needed by plants in their growth. The fundamental operations of dry-farming include a soil treatment which enables the largest possible proportion of the annual precipitation to be stored in the soil. For this purpose, the deep, somewhat porous soils, characteristic of arid regions, are unusually well adapted.
Alway"s demonstration
An important and unique demonstration of the possibility of bringing crops to maturity on the moisture stored in the soil at the time of planting has been made by Alway. Cylinders of galvanized iron, 6 feet long, were filled with soil as nearly as possible in its natural position and condition Water was added until seepage began, after which the excess was allowed to drain away. When the seepage had closed, the cylinders were entirely closed except at the surface. Sprouted grains of spring wheat were placed in the moist surface soil, and 1 inch of dry soil added to the surface to prevent evaporation. No more water was added; the air of the greenhouse was kept as dry as possible. The wheat developed normally. The first ear was ripe in 132 days after planting and the last in 143 days. The three cylinders of soil from semiarid western Nebraska produced 37.8 grams of straw and 29 ears, containing 415 kernels weighing 11.188 grams. The three cylinders of soil from humid eastern Nebraska produced only 11.2 grams of straw and 13 ears containing 114 kernels, weighing 3 grams. This experiment shows conclusively that rains are not needed during the growing season, if the soil is well filled with moisture at seedtime, to bring crops to maturity.
What becomes of the rainfall?
The water that falls on the land is disposed of in three ways: First, under ordinary conditions, a large portion runs off without entering the soil; secondly, a portion enters the soil, but remains near the surface, and is rapidly evaporated back into the air; and, thirdly, a portion enters the lower soil layers, from which it is removed at later periods by several distinct processes. The run-off is usually large and is a serious loss, especially in dry-farming regions, where the absence of luxuriant vegetation, the somewhat hard, sun-baked soils, and the numerous drainage channels, formed by successive torrents, combine to furnish the rains with an easy escape into the torrential rivers. Persons familiar with arid conditions know how quickly the narrow box canyons, which often drain thousands of square miles, are filled with roaring water after a comparatively light rainfall.
The run-off
The proper cultivation of the soil diminishes very greatly the loss due to run-off, but even on such soils the proportion may often be very great. Farrel observed at one of the Utah stations that during a torrential rain--2.6 inches in 4 hours--the surface of the summer fallowed plats was packed so solid that only one fourth inch, or less than one tenth of the whole amount, soaked into the soil, while on a neighboring stubble field, which offered greater hindrance to the run-off, 1-1/2 inches or about 60 per cent were absorbed.
It is not possible under any condition to prevent the run-off altogether, although it can usually be reduced exceedingly. It is a common dry-farm custom to plow along the slopes of the farm instead of plowing up and down them. When this is done, the water which runs down the slopes is caught by the succession of furrows and in that way the runoff is diminished. During the fallow season the disk and smoothing harrows are run along the hillsides for the same purpose and with results that are nearly always advantageous to the dry-farmer. Of necessity, each man must study his own farm in order to devise methods that will prevent the run-off.
The structure of soils
Before examining more closely the possibility of storing water in soils a brief review of the structure of soils is desirable. As previously explained, soil is essentially a mixture of disintegrated rock and the decomposing remains of plants. The rock particles which const.i.tute the major portion of soils vary greatly in size. The largest ones are often 500 times the sizes of the smallest. It would take 50 of the coa.r.s.est sand particles, and 25,000 of the finest silt particles, to form one lineal inch. The clay particles are often smaller and of such a nature that they cannot be accurately measured. The total number of soil particles in even a small quant.i.ty of cultivated soil is far beyond the ordinary limits of thought, ranging from 125,000 particles of coa.r.s.e sand to 15,625,000,000,000 particles of the finest silt in one cubic inch.
In other words, if all the particles in one cubic inch of soil consisting of fine silt were placed side by side, they would form a continuous chain over a thousand miles long. The farmer, when he tills the soil, deals with countless numbers of individual soil grains, far surpa.s.sing the understanding of the human mind. It is the immense number of const.i.tuent soil particles that gives to the soil many of its most valuable properties.
It must be remembered that no natural soil is made up of particles all of which are of the same size; all sizes, from the coa.r.s.est sand to the finest clay, are usually present. These particles of all sizes are not arranged in the soil in a regular, orderly way; they are not placed side by side with geometrical regularity; they are rather jumbled together in every possible way. The larger sand grains touch and form comparatively large interst.i.tial s.p.a.ces into which the finer silt and clay grains filter. Then, again, the clay particles, which have cementing properties, bind, as it were, one particle to another. A sand grain may have attached to it hundreds, or it may be thousands, of the smaller silt grains; or a regiment of smaller soil grains may themselves be cl.u.s.tered into one large grain by cementing power of the clay. Further, in the presence of lime and similar substances, these complex soil grains are grouped into yet larger and more complex groups. The beneficial effect of lime is usually due to this power of grouping untold numbers of soil particles into larger groups. When by correct soil culture the individual soil grains are thus grouped into large cl.u.s.ters, the soil is said to be in good tilth. Anything that tends to destroy these complex soil grains, as, for instance, plowing the soil when it is too wet, weakens the crop-producing power of the soil. This complexity of structure is one of the chief reasons for the difficulty of understanding clearly the physical laws governing soils.
Pore-s.p.a.ce of soils
It follows from this description of soil structure that the soil grains do not fill the whole of the soil s.p.a.ce. The tendency is rather to form cl.u.s.ters of soil grains which, though touching at many points, leave comparatively large empty s.p.a.ces. This pore s.p.a.ce in soils varies greatly, but with a maximum of about 55 per cent. In soils formed under arid conditions the percentage of pore-s.p.a.ce is somewhere in the neighborhood of 50 per cent. There are some arid soils, notably gypsum soils, the particles of which are so uniform size that the pore-s.p.a.ce is exceedingly small. Such soils are always difficult to prepare for agricultural purposes.
It is the pore-s.p.a.ce in soils that permits the storage of soil-moisture; and it is always important for the farmer so to maintain his soil that the pore-s.p.a.ce is large enough to give him the best results, not only for the storage of moisture, but for the growth and development of roots, and for the entrance into the soil of air, germ life, and other forces that aid in making the soil fit for the habitation of plants. This can always be best accomplished, as will be shown hereafter, by deep plowing, when the soil is not too wet, the exposure of the plowed soil to the elements, the frequent cultivation of the soil through the growing season, and the admixture of organic matter. The natural soil structure at depths not reached by the plow evidently cannot be vitally changed by the farmer.
Hygroscopic soil-water
Under normal conditions, a certain amount of water is always found in all things occurring naturally, soils included. Clinging to every tree, stone, or animal tissue is a small quant.i.ty of moisture varying with the temperature, the amount of water in the air, and with other well-known factors. It is impossible to rid any natural substance wholly of water without heating it to a high temperature.
This water which, apparently, belongs to all natural objects is commonly called hygroscopic water. Hilgard states that the soils of the arid regions contain, under a temperature of 15 deg C. and an atmosphere saturated with water, approximately 5-1/2 per cent of hygroscopic water. In fact, however, the air over the arid region is far from being saturated with water and the temperature is even higher than 15 deg C., and the hygroscopic moisture actually found in the soils of the dry-farm territory is considerably smaller than the average above given. Under the conditions prevailing in the Great Basin the hygroscopic water of soils varies from .75 per cent to 3-1/2 per cent; the average amount is not far from 12 per cent.
Whether or not the hygroscopic water of soils is of value in plant growth is a disputed question. Hilgard believes that the hygroscopic moisture can be of considerable help in carrying plants through rainless summers, and further, that its presence prevents the heating of the soil particles to a point dangerous to plant roots.
Other authorities maintain earnestly that the hygroscopic soil-water is practically useless to plants. Considering the fact that wilting occurs long before the hygroscopic water contained in the soil is reached, it is very unlikely that water so held is of any real benefit to plant growth.
Gravitational water
It often happens that a portion of the water in the soil is under the immediate influence of gravitation. For instance, a stone which, normally, is covered with hygroscopic water is dipped into water The hydroscopic water is not thereby affected, but as the stone is drawn out of the water a good part of the water runs off. This is gravitational water That is, the gravitational water of soils is that portion of the soil-water which filling the soil pores, flows downward through the soil under the influence of gravity. When the soil pores are completely filled, the maximum amount of gravitational water is found there. In ordinary dry-farm soils this total water capacity is between 35 and 40 per cent of the dry weight of soil.
The gravitational soil-water cannot long remain in that condition; for, necessarily, the pull of gravity moves it downward through the soil pores and if conditions are favorable, it finally reaches the standing water-table, whence it is carried to the great rivers, and finally to the ocean. In humid soils, under a large precipitation, gravitational water moves down to the standing water-table after every rain. In dry-farm soils the gravitational water seldom reaches the standing water-table; for, as it moves downward, it wets the soil grains and remains in the capillary condition as a thin film around the soil grains.
To the dry-farmer, the full water capacity is of importance only as it pertains to the upper foot of soil. If, by proper plowing and cultivation, the upper soil be loose and porous, the precipitation is allowed to soak quickly into the soil, away from the action of the wind and sun. From this temporary reservoir, the water, in obedience to the pull of gravity, will move slowly downward to the greater soil depths, where it will be stored permanently until needed by plants. It is for this reason that dry-farmers find it profitable to plow in the fall, as soon as possible after harvesting. In fact, Campbell advocates that the harvester be followed immediately by the disk, later to be followed by the plow The essential thing is to keep the topsoil open and receptive to a rain.
Capillary soil-water
The so-called capillary soil-water is of greatest importance to the dry-farmer. This is the water that clings as a film around a marble that has been dipped into water. There is a natural attraction between water and nearly all known substances, as is witnessed by the fact that nearly all things may be moistened. The water is held around the marble because the attraction between the marble and the water is greater than the pull of gravity upon the water. The greater the attraction, the thicker the film; the smaller the attraction, the thinner the film will be. The water that rises in a capillary gla.s.s tube when placed in water does so by virtue of the attraction between water and gla.s.s. Frequently, the force that makes capillary water possible is called surface tension.
Whenever there is a sufficient amount of water available, a thin film of water is found around every soil grain; and where the soil grains touch, or where they are very near together, water is held pretty much as in capillary tubes. Not only are the soil particles enveloped by such a film, but the plant roots foraging in the soil are likewise covered; that is, the whole system of soil grains and roots is covered, under favorable conditions, with a thin film of capillary water. It is the water in this form upon which plants draw during their periods of growth. The hygroscopic water and the gravitational water are of comparatively little value in plant growth.
Field capacity of soils for capillary water
The tremendously large number of soil grains found in even a small amount of soil makes it possible for the soil to hold very large quant.i.ties of capillary water. To ill.u.s.trate: In one cubic inch of sand soil the total surface exposed by the soil grains varies from 42 square inches to 27 square feet; in one cubic inch of silt soil, from 27 square feet to 72 square feet, and in one cubic inch of an ordinary soil the total surface exposed by the soil grains is about 25 square feet. This means that the total surface of the soil grains contained in a column of soil 1 square foot at the top and 10 feet deep is approximately 10 acres. When even a thin film of water is spread over such a large area, it is clear that the total amount of water involved must be large It is to be noticed, therefore, that the fineness of the soil particles previously discussed has a direct bearing upon the amount of water that soils may retain for the use of plant growth. As the fineness of the soil grains increases, the total surface increases" and the water-holding capacity also increases.