"How long did you knead it?" said Edison.
"Oh! more than an hour," replied the a.s.sistant.
"Well, just keep on for a few hours more and it will come out all right," was the rejoinder. And this proved to be correct, for, after a prolonged kneading and rolling, the ma.s.s changed into a cohesive, stringy, h.o.m.ogeneous putty. It was from a mixture of this kind that spiral filaments were made and used in some of the earliest forms of successful incandescent lamps; indeed, they are described and ill.u.s.trated in Edison"s fundamental lamp patent (No. 223,898).
The present narrative would a.s.sume the proportions of a history of the incandescent lamp, should the authors attempt to follow Edison"s investigations through the thousands of pages of note-books away back in the eighties and early nineties. Improvement of the lamp was constantly in his mind all those years, and besides the vast amount of detail experimental work he laid out for his a.s.sistants, he carried on a great deal of research personally. Sometimes whole books are filled in his own handwriting with records of experiments showing every conceivable variation of some particular line of inquiry; each trial bearing some terse comment expressive of results. In one book appear the details of one of these experiments on September 3, 1891, at 4.30 A.M., with the comment: "Brought up lamp higher than a 16-c.p. 240 was ever brought before--Hurrah!" Notwithstanding the late hour, he turns over to the next page and goes on to write his deductions from this result as compared with those previously obtained. Proceeding day by day, as appears by this same book, he follows up another line of investigation on lamps, apparently full of difficulty, for after one hundred and thirty-two other recorded experiments we find this note: "Sat.u.r.day 3.30 went home disgusted with incandescent lamps." This feeling was evidently evanescent, for on the succeeding Monday the work was continued and carried on by him as keenly as before, as shown by the next batch of notes.
This is the only instance showing any indication of impatience that the authors have found in looking through the enormous ma.s.s of laboratory notes. All his a.s.sistants agree that Edison is the most patient, tireless experimenter that could be conceived of. Failures do not distress him; indeed, he regards them as always useful, as may be gathered from the following, related by Dr. E. G. Acheson, formerly one of his staff: "I once made an experiment in Edison"s laboratory at Menlo Park during the latter part of 1880, and the results were not as looked for. I considered the experiment a perfect failure, and while bemoaning the results of this apparent failure Mr. Edison entered, and, after learning the facts of the case, cheerfully remarked that I should not look upon it as a failure, for he considered every experiment a success, as in all cases it cleared up the atmosphere, and even though it failed to accomplish the results sought for, it should prove a valuable lesson for guidance in future work. I believe that Mr. Edison"s success as an experimenter was, to a large extent, due to this happy view of all experiments."
Edison has frequently remarked that out of a hundred experiments he does not expect more than one to be successful, and as to that one he is always suspicious until frequent repet.i.tion has verified the original results.
This patient, optimistic view of the outcome of experiments has remained part of his character down to this day, just as his painstaking, minute, incisive methods are still unchanged. But to the careless, stupid, or lazy person he is a terror for the short time they remain around him.
Honest mistakes may be tolerated, but not carelessness, incompetence, or lack of attention to business. In such cases Edison is apt to express himself freely and forcibly, as when he was asked why he had parted with a certain man, he said: "Oh, he was so slow that it would take him half an hour to get out of the field of a microscope." Another instance will be ill.u.s.trative. Soon after the Brockton (Ma.s.sachusetts) central station was started in operation many years ago, he wrote a note to Mr. W. S.
Andrews, containing suggestions as to future stations, part of which related to the various employees and their duties. After outlining the duties of the meter man, Edison says: "I should not take too young a man for this, say, a man from twenty-three to thirty years old, bright and businesslike. Don"t want any one who yearns to enter a laboratory and experiment. We have a bad case of that at Brockton; he neglects business to potter. What we want is a good lamp average and no unprofitable customer. You should have these men on probation and subject to pa.s.sing an examination by me. This will wake them up."
Edison"s examinations are no joke, according to Mr. J. H. Vail, formerly one of the Menlo Park staff. "I wanted a job," he said, "and was ambitious to take charge of the dynamo-room. Mr. Edison led me to a heap of junk in a corner and said: "Put that together and let me know when it"s running." I didn"t know what it was, but received a liberal education in finding out. It proved to be a dynamo, which I finally succeeded in a.s.sembling and running. I got the job." Another man who succeeded in winning a place as a.s.sistant was Mr. John F. Ott, who has remained in his employ for over forty years. In 1869, when Edison was occupying his first manufacturing shop (the third floor of a small building in Newark), he wanted a first-cla.s.s mechanician, and Mr. Ott was sent to him. "He was then an ordinary-looking young fellow," says Mr. Ott, "dirty as any of the other workmen, unkempt, and not much better dressed than a tramp, but I immediately felt that there was a great deal in him." This is the conversation that ensued, led by Mr.
Edison"s question:
"What do you want?"
"Work."
"Can you make this machine work?" (exhibiting it and explaining its details).
"Yes."
"Are you sure?"
"Well, you needn"t pay me if I don"t."
And thus Mr. Ott went to work and succeeded in accomplishing the results desired. Two weeks afterward Mr. Edison put him in charge of the shop.
Edison"s life fairly teems with instances of unruffled patience in the pursuit of experiments. When he feels thoroughly impressed with the possibility of accomplishing a certain thing, he will settle down composedly to investigate it to the end.
This is well ill.u.s.trated in a story relating to his invention of the type of storage battery bearing his name. Mr. W. S. Mallory, one of his closest a.s.sociates for many years, is the authority for the following: "When Mr. Edison decided to shut down the ore-milling plant at Edison, New Jersey, in which I had been a.s.sociated with him, it became a problem as to what he could profitably take up next, and we had several discussions about it. He finally thought that a good storage battery was a great requisite, and decided to try and devise a new type, for he declared emphatically he would make no battery requiring sulphuric acid.
After a little thought he conceived the nickel-iron idea, and started to work at once with characteristic energy. About 7 or 7.30 A.M. he would go down to the laboratory and experiment, only stopping for a short time at noon to eat a lunch sent down from the house. About 6 o"clock the carriage would call to take him to dinner, from which he would return by 7.30 or 8 o"clock to resume work. The carriage came again at midnight to take him home, but frequently had to wait until 2 or 3 o"clock, and sometimes return without him, as he had decided to continue all night.
"This had been going on more than five months, seven days a week, when I was called down to the laboratory to see him. I found him at a bench about three feet wide and twelve to fifteen feet long, on which there were hundreds of little test cells that had been made up by his corps of chemists and experimenters. He was seated at this bench testing, figuring, and planning. I then learned that he had thus made over nine thousand experiments in trying to devise this new type of storage battery, but had not produced a single thing that promised to solve the question. In view of this immense amount of thought and labor, my sympathy got the better of my judgment, and I said: "Isn"t it a shame that with the tremendous amount of work you have done you haven"t been able to get any results?" Edison turned on me like a flash, and with a smile replied: "Results! Why, man, I have gotten a lot of results! I know several thousand things that won"t work."
"At that time he sent me out West on a special mission. On my return, a few weeks later, his experiments had run up to over ten thousand, but he had discovered the missing link in the combination sought for. Of course, we all remember how the battery was completed and put on the market. Then, because he was dissatisfied with it, he stopped the sales and commenced a new line of investigation, which has recently culminated successfully. I shouldn"t wonder if his experiments on the battery ran up pretty near to fifty thousand, for they fill more than one hundred and fifty of the note-books, to say nothing of some thousands of tests in curve sheets."
Although Edison has an absolute disregard for the total outlay of money in investigation, he is particular to keep down the cost of individual experiments to a minimum, for, as he observed to one of his a.s.sistants: "A good many inventors try to develop things life-size, and thus spend all their money, instead of first experimenting more freely on a small scale." To Edison life is not only a grand opportunity to find out things by experiment, but, when found, to improve them by further experiment. One night, after receiving a satisfactory report of progress from Mr. Mason, superintendent of the cement plant, he said: "The only way to keep ahead of the procession is to experiment. If you don"t, the other fellow will. When there"s no experimenting there"s no progress.
Stop experimenting and you go backward. If anything goes wrong, experiment until you get to the very bottom of the trouble."
It is easy to realize, therefore, that a character so thoroughly permeated with these ideas is not apt to stop and figure out expense when in hot pursuit of some desired object. When that object has been attained, however, and it pa.s.ses from the experimental to the commercial stage, Edison"s monetary views again come into strong play, but they take a diametrically opposite position, for he then begins immediately to plan the extreme of economy in the production of the article. A thousand and one instances could be quoted in ill.u.s.tration; but as they would tend to change the form of this narrative into a history of economy in manufacture, it will suffice to mention but one, and that a recent occurrence, which serves to ill.u.s.trate how closely he keeps in touch with everything, and also how the inventive faculty and instinct of commercial economy run close together. It was during Edison"s winter stay in Florida, in March, 1909. He had reports sent to him daily from various places, and studied them carefully, for he would write frequently with comments, instructions, and suggestions; and in one case, commenting on the oiling system at the cement plant, he wrote: "Your oil losses are now getting lower, I see." Then, after suggesting some changes to reduce them still further, he went on to say: "Here is a chance to save a mill per barrel based on your regular daily output."
This thorough consideration of the smallest detail is essentially characteristic of Edison, not only in economy of manufacture, but in all his work, no matter of what kind, whether it be experimenting, investigating, testing, or engineering. To follow him through the labyrinthine paths of investigation contained in the great array of laboratory note-books is to become involved in a ma.s.s of minutely detailed searches which seek to penetrate the inmost recesses of nature by an ultimate a.n.a.lysis of an infinite variety of parts. As the reader will obtain a fuller comprehension of this idea, and of Edison"s methods, by concrete ill.u.s.tration rather than by generalization, the authors have thought it well to select at random two typical instances of specific investigations out of the thousands that are scattered through the notebooks. These will be found in the following extracts from one of the note-books, and consist of Edison"s instructions to be carried out in detail by his experimenters:
"Take, say, 25 lbs. hard Cuban asphalt and separate all the different hydrocarbons, etc., as far as possible by means of solvents. It will be necessary first to dissolve everything out by, say, hot turpentine, then successively treat the residue with bisulphide carbon, benzol, ether, chloroform, naphtha, toluol, alcohol, and other probable solvents.
After you can go no further, distil off all the solvents so the asphalt material has a tar-like consistency. Be sure all the ash is out of the turpentine portion; now, after distilling the turpentine off, act on the residue with all the solvents that were used on the residue, using for the first the solvent which is least likely to dissolve a great part of it. By thus manipulating the various solvents you will be enabled probably to separate the crude asphalt into several distinct hydrocarbons. Put each in a bottle after it has been dried, and label the bottle with the process, etc., so we may be able to duplicate it; also give bottle a number and describe everything fully in note-book."
"Destructively distil the following substances down to a point just short of carbonization, so that the residuum can be taken out of the retort, powdered, and acted on by all the solvents just as the asphalt in previous page. The distillation should be carried to, say, 600 degrees or 700 degrees Fahr., but not continued long enough to wholly reduce ma.s.s to charcoal, but always run to blackness. Separate the residuum in as many definite parts as possible, bottle and label, and keep accurate records as to process, weights, etc., so a reproduction of the experiment can at any time be made: Gelatine, 4 lbs.; asphalt, hard Cuban, 10 lbs.; coal-tar or pitch, 10 lbs.; wood-pitch, 10 lbs.; Syrian asphalt, 10 lbs.; bituminous coal, 10 lbs.; cane-sugar, 10 lbs.; glucose, 10 lbs.; dextrine, 10 lbs.; glycerine, 10 lbs.; tartaric acid, 5 lbs.; gum guiac, 5 lbs.; gum amber, 3 lbs.; gum tragacanth, 3 Lbs.; aniline red, 1 lb.; aniline oil, 1 lb.; crude anthracene, 5 lbs.; petroleum pitch, 10 lbs.; alb.u.men from eggs, 2 lbs.; tar from pa.s.sing chlorine through aniline oil, 2 lbs.; citric acid, 5 lbs.; sawdust of boxwood, 3 lbs.; starch, 5 lbs.; sh.e.l.lac, 3 lbs.; gum Arabic, 5 lbs.; castor oil, 5 lbs."
The empirical nature of his method will be apparent from an examination of the above items; but in pursuing it he leaves all uncertainty behind and, trusting nothing to theory, he acquires absolute knowledge.
Whatever may be the mental processes by which he arrives at the starting-point of any specific line of research, the final results almost invariably prove that he does not plunge in at random; indeed, as an old a.s.sociate remarked: "When Edison takes up any proposition in natural science, his perceptions seem to be elementally broad and a.n.a.lytical, that is to say, in addition to the knowledge he has acquired from books and observation, he appears to have an intuitive apprehension of the general order of things, as they might be supposed to exist in natural relation to each other. It has always seemed to me that he goes to the core of things at once."
Although nothing less than results from actual experiments are acceptable to him as established facts, this view of Edison may also account for his peculiar and somewhat weird ability to "guess"
correctly, a faculty which has frequently enabled him to take short cuts to lines of investigation whose outcome has verified in a most remarkable degree statements apparently made offhand and without calculation. Mr. Upton says: "One of the main impressions left upon me, after knowing Mr. Edison for many years, is the marvellous accuracy of his guesses. He will see the general nature of a result long before it can be reached by mathematical calculation." This was supplemented by one of his engineering staff, who remarked: "Mr. Edison can guess better than a good many men can figure, and so far as my experience goes, I have found that he is almost invariably correct. His guess is more than a mere starting-point, and often turns out to be the final solution of a problem. I can only account for it by his remarkable insight and wonderful natural sense of the proportion of things, in addition to which he seems to carry in his head determining factors of all kinds, and has the ability to apply them instantly in considering any mechanical problem."
While this mysterious intuitive power has been of the greatest advantage in connection with the vast number of technical problems that have entered into his life-work, there have been many remarkable instances in which it has seemed little less than prophecy, and it is deemed worth while to digress to the extent of relating two of them. One day in the summer of 1881, when the incandescent lamp-industry was still in swaddling clothes, Edison was seated in the room of Major Eaton, vice-president of the Edison Electric Light Company, talking over business matters, when Mr. Upton came in from the lamp factory at Menlo Park, and said: "Well, Mr. Edison, we completed a thousand lamps to-day." Edison looked up and said "Good," then relapsed into a thoughtful mood. In about two minutes he raised his head, and said: "Upton, in fifteen years you will be making forty thousand lamps a day."
None of those present ventured to make any remark on this a.s.sertion, although all felt that it was merely a random guess, based on the sanguine dream of an inventor. The business had not then really made a start, and being entirely new was without precedent upon which to base any such statement, but, as a matter of fact, the records of the lamp factory show that in 1896 its daily output of lamps was actually about forty thousand.
The other instance referred to occurred shortly after the Edison Machine Works was moved up to Schenectady, in 1886. One day, when he was at the works, Edison sat down and wrote on a sheet of paper fifteen separate predictions of the growth and future of the electrical business.
Notwithstanding the fact that the industry was then in an immature state, and that the great boom did not set in until a few years afterward, twelve of these predictions have been fully verified by the enormous growth and development in all branches of the art.
What the explanation of this gift, power, or intuition may be, is perhaps better left to the psychologist to speculate upon. If one were to ask Edison, he would probably say, "Hard work, not too much sleep, and free use of the imagination." Whether or not it would be possible for the average mortal to arrive at such perfection of "guessing" by faithfully following this formula, even reinforced by the Edison recipe for stimulating a slow imagination with pastry, is open for demonstration.
Somewhat allied to this curious faculty is another no less remarkable, and that is, the ability to point out instantly an error in a ma.s.s of reported experimental results. While many instances could be definitely named, a typical one, related by Mr. J. D. Flack, formerly master mechanic at the lamp factory, may be quoted: "During the many years of lamp experimentation, batches of lamps were sent to the photometer department for test, and Edison would examine the tabulated test sheets.
He ran over every item of the tabulations rapidly, and, apparently without any calculation whatever, would check off errors as fast as he came to them, saying: "You have made a mistake; try this one over."
In every case the second test proved that he was right. This wonderful apt.i.tude for infallibly locating an error without an instant"s hesitation for mental calculation, has always appealed to me very forcibly."
The ability to detect errors quickly in a series of experiments is one of the things that has enabled Edison to accomplish such a vast amount of work as the records show. Examples of the minuteness of detail into which his researches extend have already been mentioned, and as there are always a number of such investigations in progress at the laboratory, this ability stands Edison in good stead, for he is thus enabled to follow, and, if necessary, correct each one step by step.
In this he is aided by the great powers of a mind that is able to free itself from absorbed concentration on the details of one problem, and instantly to shift over and become deeply and intelligently concentrated in another and entirely different one. For instance, he may have been busy for hours on chemical experiments, and be called upon suddenly to determine some mechanical questions. The complete and easy transition is the constant wonder of his a.s.sociates, for there is no confusion of ideas resulting from these quick changes, no hesitation or apparent effort, but a plunge into the midst of the new subject, and an instant acquaintance with all its details, as if he had been studying it for hours.
A good stiff difficulty--one which may, perhaps, appear to be an unsurmountable obstacle--only serves to make Edison cheerful, and brings out variations of his methods in experimenting. Such an occurrence will start him thinking, which soon gives rise to a line of suggestions for approaching the trouble from various sides; or he will sit down and write out a series of eliminations, additions, or changes to be worked out and reported upon, with such variations as may suggest themselves during their progress. It is at such times as these that his unfailing patience and tremendous resourcefulness are in evidence. Ideas and expedients are poured forth in a torrent, and although some of them have temporarily appeared to the staff to be ridiculous or irrelevant, they have frequently turned out to be the ones leading to a correct solution of the trouble.
Edison"s inexhaustible resourcefulness and fertility of ideas have contributed largely to his great success, and have ever been a cause of amazement to those around him. Frequently, when it would seem to others that the extreme end of an apparently blind alley had been reached, and that it was impossible to proceed further, he has shown that there were several ways out of it. Examples without number could be quoted, but one must suffice by way of ill.u.s.tration. During the progress of the ore-milling work at Edison, it became desirable to carry on a certain operation by some special machinery. He requested the proper person on his engineering staff to think this matter up and submit a few sketches of what he would propose to do. He brought three drawings to Edison, who examined them and said none of them would answer. The engineer remarked that it was too bad, for there was no other way to do it. Mr. Edison turned to him quickly, and said: "Do you mean to say that these drawings represent the only way to do this work?" To which he received the reply: "I certainly do." Edison said nothing. This happened on a Sat.u.r.day. He followed his usual custom of spending Sunday at home in Orange. When he returned to the works on Monday morning, he took with him sketches he had made, showing FORTY-EIGHT other ways of accomplishing the desired operation, and laid them on the engineer"s desk without a word.
Subsequently one of these ideas, with modifications suggested by some of the others, was put into successful practice.
Difficulties seem to have a peculiar charm for Edison, whether they relate to large or small things; and although the larger matters have contributed most to the history of the arts, the same carefulness of thought has often been the means of leading to improvements of permanent advantage even in minor details. For instance, in the very earliest days of electric lighting, the safe insulation of two bare wires fastened together was a serious problem that was solved by him. An iron pot over a fire, some insulating material melted therein, and narrow strips of linen drawn through it by means of a wooden clamp, furnished a readily applied and adhesive insulation, which was just as perfect for the purpose as the regular and now well-known insulating tape, of which it was the forerunner.
Dubious results are not tolerated for a moment in Edison"s experimental work. Rather than pa.s.s upon an uncertainty, the experiment will be dissected and checked minutely in order to obtain absolute knowledge, pro and con. This searching method is followed not only in chemical or other investigations, into which complexities might naturally enter, but also in more mechanical questions, where simplicity of construction might naturally seem to preclude possibilities of uncertainty. For instance, at the time when he was making strenuous endeavors to obtain copper wire of high conductivity, strict laboratory tests were made of samples sent by manufacturers. One of these samples tested out poorer than a previous lot furnished from the same factory. A report of this to Edison brought the following note: "Perhaps the ---- wire had a bad spot in it. Please cut it up into lengths and test each one and send results to me immediately." Possibly the electrical fraternity does not realize that this earnest work of Edison, twenty-eight years ago, resulted in the establishment of the high quality of copper wire that has been the recognized standard since that time. Says Edison on this point: "I furnished the expert and apparatus to the Ansonia Bra.s.s and Copper Company in 1883, and he is there yet. It was this expert and this company who pioneered high-conductivity copper for the electrical trade."
Nor is it generally appreciated in the industry that the adoption of what is now regarded as a most obvious proposition--the high-economy incandescent lamp--was the result of that characteristic foresight which there has been occasion to mention frequently in the course of this narrative, together with the courage and "horse-sense" which have always been displayed by the inventor in his persistent pushing out with far-reaching ideas, in the face of pessimistic opinions. As is well known, the lamps of the first ten or twelve years of incandescent lighting were of low economy, but had long life. Edison"s study of the subject had led him to the conviction that the greatest growth of the electric-lighting industry would be favored by a lamp taking less current, but having shorter, though commercially economical life; and after gradually making improvements along this line he developed, finally, a type of high-economy lamp which would introduce a most radical change in existing conditions, and lead ultimately to highly advantageous results. His start on this lamp, and an expressed desire to have it manufactured for regular use, filled even some of his business a.s.sociates with dismay, for they could see nothing but disaster ahead in forcing such a lamp on the market. His persistence and profound conviction of the ultimate results were so strong and his arguments so sound, however, that the campaign was entered upon. Although it took two or three years to convince the public of the correctness of his views, the idea gradually took strong root, and has now become an integral principle of the business.
In this connection it may be noted that with remarkable prescience Edison saw the coming of the modern lamps of to-day, which, by reason of their small consumption of energy to produce a given candle-power, have dismayed central-station managers. A few years ago a consumption of 3.1 watts per candle-power might safely be a.s.sumed as an excellent average, and many stations fixed their rates and business on such a basis. The results on income when the consumption, as in the new metallic-filament lamps, drops to 1.25 watts per candle can readily be imagined. Edison has insisted that central stations are selling light and not current; and he points to the predicament now confronting them as truth of his a.s.sertion that when selling light they share in all the benefits of improvement, but that when they sell current the consumer gets all those benefits without division. The dilemma is encountered by central stations in a bewildered way, as a novel and unexpected experience; but Edison foresaw the situation and warned against it long ago. It is one of the greatest gifts of statesmanship to see new social problems years before they arise and solve them in advance. It is one of the greatest attributes of invention to foresee and meet its own problems in exactly the same way.
CHAPTER XXV
THE LABORATORY AT ORANGE AND THE STAFF
A LIVING interrogation-point and a born investigator from childhood, Edison has never been without a laboratory of some kind for upward of half a century.
In youthful years, as already described in this book, he became ardently interested in chemistry, and even at the early age of twelve felt the necessity for a special nook of his own, where he could satisfy his unconvinced mind of the correctness or inaccuracy of statements and experiments contained in the few technical books then at his command.