Logic

Chapter 19

(2) Is the Minor Premise true? This question can only arise when the minor premise is a real proposition; and then it may be very difficult to answer. Water rusts iron; but is the metal we are now dealing with a fair specimen of iron? Few people, comparatively, know how to determine whether diamonds, or even gold or silver coins, are genuine. That _Camels are ruminants_ is now a verbal proposition to a Zoologist, but not to the rest of us; and to the Zoologist the ascertaining of the relation in which camels stand to such ruminants as oxen and deer, was not a matter of a.n.a.lysing words but of dissecting specimens. What a long controversy as to whether the human race const.i.tutes a Family of the Primates! That "the British Empire is an empire" affords no matter for doubt or inquiry; but how difficult to judge whether the British Empire resembles a.s.syria, Egypt, Rome, Spain in those characters and circ.u.mstances that caused their downfall!

(3) Is the Major Premise true? Are all ruminants herbivorous? If there be any exceptions to the rule, camels are likely enough to be among the exceptions. And here the need of Inductive Logic is most conspicuous: how can we prove our premises when they are universal propositions?

Universal propositions, however, are also involved in proving the minor premise: to prove a thing to be iron, we must know the constant reactions of iron.

A second advantage of the syllogism is, that it makes us fully aware of what an inference implies. An inference must have some grounds, or else it is a mere prejudice; but whatever the grounds, if sufficient in a particular case, they must be sufficient for all similar cases, they must admit of being generalised; and to generalise the grounds of the inference, is nothing else than to state the major premise. If the evidence is sufficient to justify the argument that camels are herbivorous _because_ they are ruminants, it must also justify the major premise, _All ruminants are herbivorous_; for else the inference cannot really depend merely upon the fact of ruminating. To state our evidence syllogistically, then, must be possible, if the evidence is mediate and of a logical kind; and to state it in this formal way, as depending on the truth of a general principle (the major premise), increases our sense of responsibility for the inference that is thus seen to imply so much; and if any negative instances lie within our knowledge, we are the more likely to remember them. The use of syllogisms therefore tends to strengthen our reasonings.

A third advantage is, that to formulate an accurate generalisation may be useful to others: it is indeed part of the systematic procedure of science. The memoranda of our major premises, or reasons for believing anything, may be referred to by others, and either confirmed or refuted.



When such a memorandum is used for further inferences, these inferences are said, in the language of Formal Logic, to be drawn _from_ it, as if the conclusion were contained in our knowledge of the major premise; but, considering the limited extent of the material evidence, it is better to say that the inference is drawn _according to_ the memorandum or major premise, since the grounds of the major premise and of the conclusion are in fact the same (Mill: _Logic_, B. II. c. 3). Inductive proofs may be stated in Syllogisms, and inductive inferences are drawn _according to_ the Law of Causation.

-- 7. To a.s.sume that resemblance is a ground of inference, and that substance and attribute, or cause and effect, are phenomena constantly related, implies belief in the Uniformity of Nature. The Uniformity of Nature cannot be defined, and is therefore liable to be misunderstood.

In many ways Nature seems not to be uniform: there is great variety in the sizes, shapes, colours and all other properties of things: bodies falling in the open air--pebbles, slates, feathers--descend in different lines and at different rates; the wind and weather are proverbially uncertain; the course of trade or of politics, is full of surprises. Yet common maxims, even when absurd, testify to a popular belief that the relations of things are constant: the doctrine of St. Swithin and the rhyme beginning "Evening red and morning grey," show that the weather is held to be not wholly unpredictable; as to human affairs, it is said that "a green Yule makes a fat churchyard," that "trade follows the flag," and that "history repeats itself"; and Superst.i.tion knows that witches cannot enter a stable-door if a horse-shoe is nailed over it, and that the devil cannot cross a threshold inscribed with a perfect pentagram. But the surest proof of a belief in the uniformity of nature is given by the conduct of men and animals; by that adherence to habit, custom and tradition, to which in quiet times they chiefly owe their safety, but which would daily disappoint and destroy them, if it were not generally true that things may be found where they have been left and that in similar circ.u.mstances there are similar events.

Now this general belief, seldom distinctly conceived, for the most part quite unconscious (as a principle), merely implied in what men do, is also the foundation of all the Sciences; which are entirely occupied in seeking the Laws (that is, the Uniformities) of Nature. As the uniformity of nature cannot be defined, it cannot be proved; the most convincing evidence in its favour is the steady progress made by Science whilst trusting in it. Nevertheless, what is important is not the comprehensive but indeterminate notion of Uniformity so much as a number of First Principles, which may be distinguished in it as follows:

(1) The Principles of Contradiction and Excluded Middle (ch. vi. -- 3) declare that in a given relation to a given phenomenon any two or more other phenomena are incompatible (_B is not A and a_); whilst the given phenomenon either stands related to another phenomenon or not (_B is either A or a_). It is not only a matter of Logic but of fact that, if a leaf is green, it is not under the same conditions red or blue, and that if it is not green it is some other colour.

(2) Certain Axioms of Mediate Evidence: as, in Mathematics, "that magnitudes equal to the same magnitude are equal to one another"; and, in Logic, the _Dictum_ or its material equivalent.

(3) That all Times and all s.p.a.ces are commensurable; although in certain relations of s.p.a.ce (as p) the unit of measurement must be infinitely small.--If Time really trotted with one man and galloped with another, as it seems to; if s.p.a.ce really swelled in places, as De Quincey dreamed that it did; life could not be regulated, experience could not be compared and science would be impossible. The Mathematical Axioms would then never be applicable to s.p.a.ce or time, or to the objects or processes that fill them.

(4) The Persistence of Matter and Energy: the physical principle that, in all changes of the universe, the quant.i.ties of Matter and Energy (actual and potential, so-called) remain the same.--For example, as to matter, although dew is found on the gra.s.s at morning without any apparent cause, and although a candle seems to burn away to a sc.r.a.p of blackened wick, yet every one knows that the dew has been condensed from vapour in the air, and that the candle has only turned into gas and smoke. As to energy, although a stone thrown up to the housetop and resting there has lost actual energy, it has gained such a position that the slightest touch may bring it to the earth again in the same time as it took to travel upwards; so on the house-top it is said to have potential energy. When a boiler works an engine, every time the piston is thrust forward (mechanical energy), an equivalent in heat (molecular energy) is lost. But for the elucidation of these principles, readers must refer to treatises of Chemistry and Physics.

(5) Causation, a special form of the foregoing principles of the persistence of matter and energy, we shall discuss in the next chapter.

It is not to be conceived of as anything occult or noumenal, but merely as a special mode of the uniformity of Nature or experience.

(6) Certain Uniformities of Co-existence; but for want of a general principle of Co-existence, corresponding to Causation (the principle of Succession), we can only cla.s.sify these uniformities as follows:

(a) The Geometrical; as that, in a four-sided figure, if the opposite angles are equal, the opposite sides are equal and parallel.--Countless similar uniformities of co-existence are disclosed by Geometry. The co-existent facts do not cause one another, nor are they jointly caused by something else; they are mutually involved: such is the nature of s.p.a.ce.

(b) Universal co-inherences among the properties of concrete things.--The chief example is the co-inherence of gravity with inertia in all material bodies. There is, I believe, no other entirely satisfactory case; but some good approximations to such uniformity are known to physical science.

(c) Co-existence due to Causation; such as the positions of objects in s.p.a.ce at any time.--The houses of a town are where they are, because they were put there; and they remain in their place as long as no other causes arise strong enough to remove or destroy them. Similarly, the relative positions of rocks in geological strata, and of trees in a forest, are due to causes.

(d) The co-inherence of properties in Natural Kinds; which we call the const.i.tution, defining characters, or specific nature of such things.--Oxygen, platinum, sulphur and the other elements; water, common salt, alcohol and other compounds; the various species of plants and animals: all these are known to us as different groups of co-inherent properties. It may be conjectured that these groupings of properties are also due to causation, and sometimes the causes can be traced: but very often the causes are still unknown; and, until resolved into their causes, they must be taken as necessary data in the investigation of nature. Laws of the co-inherence of the properties of Kinds do not, like laws of causation, admit of methodical proof upon their own principles, but only by constancy in experience and statistical probability (c. xix, -- 4).

(e) There are also a few cases in which properties co-exist in an unaccountable way, without being co-extensive with any one species, genus, or order: as most metals are whitish, and scarlet flowers are wanting in fragrance. (On this -- 7, see Venn"s _Empirical Logic_, c. 4.)

-- 8. Inasmuch as Axioms of Uniformity are ultimate truths, they cannot be deduced; and inasmuch as they are universal, no proof by experience can ever be adequate. The grounds of our belief in them seem to be these:

(1) Every inference takes for granted an order of Nature corresponding with it; and every attempt to explain the origin of anything a.s.sumes that it is the transformation of something else: so that uniformity of order and conservation of matter and energy are necessary presuppositions of reasoning.

(2) On the rise of philosophic reflection, these tacit presuppositions are first taken as dogmas, and later as postulates of scientific generalisation, and of the architectonic unification of science. Here they are indispensable.

(3) The presuppositions or postulates are, in some measure, verifiable in practical life and in scientific demonstration, and the better verifiable as our methods become more exact.

(4) There is a cause of this belief that cannot be said to contain any evidence for it, namely, the desire to find in Nature a foundation for confidence in our own power to foresee and to control events.

CHAPTER XIV

CAUSATION

-- 1. For the theory of Induction, the specially important aspect of the Uniformity of Nature is Causation.

For (1) the Principles of Contradiction and Excluded Middle are implied in all logical operations, and need no further explication.

(2) That one thing is a mark of another or constantly related to it, must be established by Induction; and the surest of all marks is a Cause. So that the application of the axiom of the Syllogism in particular cases requires, when most valid, a previous appeal to Causation.

(3) The uniformity of s.p.a.ce and of Time is involved in Causation, so far as we conceive Causation as essentially matter in motion--for motion is only known as a traversing of s.p.a.ce in time; and so far as forces vary in any way according to the distance between bodies; so that if s.p.a.ce and time were not uniform, causation would be irregular. Not that time and s.p.a.ce are agents, but they are conditions of every agent"s operation.

(4) The persistence of Matter and Energy, being nothing else than Causation in the general movement of the world, is applied under the name of that principle in explaining any particular limited phenomenon, such as a soap-bubble, or a thunderstorm, or the tide.

(5) As to co-existences, the Geometrical do not belong to Logic: those involved in the existence of plants, animals, and inorganic bodies, must, as far as possible, be traced to causes; and so, of course, must the relative positions of objects in s.p.a.ce at any time: and what Co-existences remain do not admit of methodical inductive treatment; they will be briefly discussed in chap. xix.

Causation, then, is that mode or aspect of the Uniformity of Nature which especially concerns us in Induction; and we must make it as definite as possible. It is nothing occult, but merely a convenient name for phenomena in a particular relation to other phenomena, called their effect. Similarly, if the word "force" is sometimes used for convenience in a.n.a.lysing causation, it means nothing more than something in time and s.p.a.ce, itself moving, or tending to move, or hindering or accelerating other things. If any one does not find these words convenient for the purpose, he can use others.

-- 2. A Cause, according to Mill, is "the invariable unconditional antecedent" of a given phenomenon. To enlarge upon this:

(1) A Cause is _relative to a given phenomenon_, called the Effect.

Logic has no method for investigating the cause of the universe as a whole, but only of a part or epoch of it: we select from the infinite continuum of Nature any portion that is neither too large nor too small for a trained mind to comprehend. The magnitude of the phenomenon may be a matter of convenience. If the cause of disease in general be too wide a problem, can fevers be dealt with; or, if that be too much, is typhus within the reach of inquiry? In short, how much can we deal with accurately?

(2) The given phenomenon is always _an event_; that is to say, not a new thing (nothing is wholly new), but a change in something, or in the relative position of things. We may ask the cause of the phases of the moon, of the freezing of water, of the kindling of a match, of a deposit of chalk, of the differentiation of species. To inquire the cause of France being a republic, or Russia an autocracy, implies that these countries were once otherwise governed, or had no government: to inquire the cause of the earth being shaped like an orange, implies that the matter of the earth had once another shape.

(3) The Cause is _antecedent_ to the Effect, which accordingly is often called its _consequent_. This is often misunderstood and sometimes disputed. It has been said that the meaning of "cause" implies an "effect," so that until an effect occurs there can be no cause. But this is a blunder; for whilst the word "cause" implies "effect," it also implies the relative futurity of the effect; and effect implies the relative priority of the cause. The connotation of the words, therefore, agrees well enough with Mill"s doctrine. In fact, the danger is that any pair of contrasted words may suggest too strongly that the phenomena denoted are separate in Nature; whereas every natural process is continuous. If water, dripping from the roof wears away a stone, it fell on the roof as rain; the rain came from a condensing cloud; the cloud was driven by the wind from the sea, whence it exhaled; and so on. There is no known beginning to this, and no break in it. We may take any one of these changes, call it an effect, and ask for its cause; or call it a cause, and ask for its effect. There is not in Nature one set of things called causes and another called effects; but every change is both cause (or a condition) of the future and effect of the past; and whether we consider an event as the one or the other, depends upon the direction of our curiosity or interest.

Still, taking the event as effect, its cause is the antecedent process; or, taking it as a cause, its effect is the consequent process. This follows from the conception of causation as essentially motion; for that _motion takes time_ is (from the way our perceptive powers grow) an ultimate intuition. But, for the same reason, there is no interval of time between cause and effect; since all the time is filled up with motion.

Nor must it be supposed that the whole cause is antecedent to the effect as a whole: for we often take the phenomenon on such a scale that minutes, days, years, ages, may elapse before we consider the cause as exhausted (e.g., an earthquake, a battle, an expansion of credit, natural selection operating on a given variety); and all that time the effect has been acc.u.mulating. But we may further consider such a cause as made up of moments or minute factors, and the effect as made up of corresponding moments; and then the cause, taken in its moments, is antecedent throughout to the effect, taken in its corresponding moments.

(4) The Cause is the _invariable_ antecedent of the effect; that is to say, whenever a given cause occurs it always has the same effect: in this, in fact, consists the Uniformity of Causation. Accordingly, not every antecedent of an event is its Cause: to a.s.sume that it is so, is the familiar fallacy of arguing "_post hoc ergo propter hoc_." Every event has an infinite number of antecedents that have no ascertainable connection with it: if a picture falls from the wall in this room, there may have occurred, just previously, an earthquake in New Zealand, an explosion in a j.a.panese a.r.s.enal, a religious riot in India, a political a.s.sa.s.sination in Russia and a vote of censure in the House of Commons, besides millions of other less noticeable events, between none of which and the falling of the picture can any direct causation be detected; though, no doubt, they are all necessary occurrences in the general world-process, and remotely connected. The cause, however, was that a door slammed violently in the room above and shook the wall, and that the picture was heavy and the cord old and rotten. Even if two events invariably occur one after the other, as day follows night, or as the report follows the flash of a gun, they may not be cause and effect, though it is highly probable that they are closely connected by causation; and in each of these two examples the events are co-effects of a common cause, and may be regarded as elements of its total effect.

Still, whilst it is not true that every antecedent, or that every invariable antecedent, of an event is its cause, the cause is conceived of as some change in certain conditions, or some state and process of things, such that should it exactly recur the same event would invariably follow. If we consider the antecedent state and process of things very widely or very minutely, it never does exactly recur; nor does the consequent. But the purpose of induction is to get as near the truth as possible within the limits set by our faculties of observation and calculation. Complex causal instances that are most unlikely to recur as a whole, may be a.n.a.lysed into the laws of their const.i.tuent conditions.

(5) The Cause is the Unconditional Antecedent. A cause is never simple, but may be a.n.a.lysed into several conditions; and "Condition" means any necessary factor of a Cause: any thing or agent that exerts, absorbs, transforms, or deflects energy; or any relation of time or s.p.a.ce in which agents stand to one another. A positive condition is one that cannot be omitted without frustrating the effect; a negative condition is one that cannot be introduced without frustrating the effect. In the falling of the picture, e.g., the positive conditions were the picture (as being heavy), the slamming of the door, and the weakness of the cord: a negative condition was that the picture should have no support but the cord. When Mill, then, defines the Cause of any event as its "unconditional" antecedent, he means that it is that group of conditions (state and process of things) which, without any further condition, is followed by the event in question: it is the least antecedent that suffices, positive conditions being present and negative absent.

Whatever item of the antecedent can be left out, then, without affecting the event, is no part of the cause. Earthquakes have happened in New Zealand and votes of censure in the House of Commons without a picture"s falling in this room: they were not unconditional antecedents; something else was needed to bring down a picture. Unconditionality also distinguishes a true cause from an invariable antecedent that is only a co-effect: for when day follows night something else happens; the Earth rotates upon her axis: a flash of gunpowder is not an unconditional antecedent of a report; the powder must be ignited in a closed chamber.

By common experience, and more precisely by experiment, it is found possible to select from among the antecedents of an event a certain number upon which, so far as can be perceived, it is dependent, and to neglect the rest: to purge the cause of all irrelevant antecedents is the great art of inductive method. Remote or minute conditions may indeed modify the event in ways so refined as to escape our notice.

Subject to the limitations of our human faculties, however, we are able in many cases to secure an unconditional antecedent upon which a certain event invariably follows. Everybody takes this for granted: if the gas will not burn, or a gun will not go off, we wonder "what can be wrong with it," that is, what positive condition is wanting, or what negative one is present. No one now supposes that gunnery depends upon those "remotest of all causes," the stars, or upon the sun being in Sagittarius rather than in Aquarius, or that one shoots straightest with a silver bullet, or after saying the alphabet backwards.

(6) That the Cause of any event is an Immediate Antecedent follows from its being an unconditional one. For if there are three events, A B C, causally connected, it is plain that A is not the unconditional antecedent of C, but requires the further condition of first giving rise to B. But that is not all; for the B that gives rise to C is never merely the effect of A; it involves something further. Take such a simple case as the motion of the earth round the sun (neglecting all other conditions, the other planets, etc.); and let the earth"s motion at three successive moments be A B C: A is not the whole cause of B in velocity and direction; we must add relation to the sun, say x. But then, again, the cause of C will not be merely Bx, for the relation to the sun will have altered; so that we must represent it as Bx". The series, therefore, is Ax Bx" C. What is called a "remote cause" is, therefore, doubly conditional; first, because it supposes an intervening cause; and secondly, because it only in part determines the conditions that const.i.tute this intervening cause.

The immediacy of a cause being implied in its unconditionalness, is an important clue to it; but as far as the detection of causes depends upon sense-perception, our powers (however aided by instruments) are unequal to the subtlety of Nature. Between the event and what seems to us the immediate antecedent many things (molecular or etherial changes) may happen in Chemistry or Physics. The progress of science would be impossible were not observation supplemented by hypothesis and calculation. And where phenomena are treated upon a large scale, as in the biological and social sciences, immediacy, as a mark of causation, must be liberally interpreted. So far, then, as to the qualitative character of Causation.

(7) But to complete our account of it, we must briefly consider its quant.i.tative character. As to the Matter contained, and as to the Energy embodied, Cause and Effect are conceived to be _equal_. As to matter, indeed, they may be more properly called identical; since the effect is nothing but the cause redistributed. When oxygen combines with hydrogen to form water, or with mercury to form red precipitate, the weight of the compound is exactly equal to the weight of the elements combined in it; when a sh.e.l.l explodes and knocks down a wall, the materials of the sh.e.l.l and wall are scattered about. As to energy, we see that in the heavenly bodies, which meet with no sensible impediment, it remains the same from age to age: with things "below the moon" we have to allow for the more or less rapid conversion of the visible motion of a ma.s.s into other forms of energy, such as sound and heat. But the right understanding of this point involves physical considerations of some difficulty, as to which the reader must refer to appropriate books, such as Balfour Stewart"s on _The Conservation of Energy_.

© 2024 www.topnovel.cc