After a few nights" observation even the veriest amateur finds himself recognizing certain shapes or appearances--a narrow dark belt running slopingly across the equator from one of the main cloud zones to the other, or a rift in one of the colored bands, or a rotund white ma.s.s apparently floating above the equator, or a broad scallop in the edge of a belt like that near the site of the celebrated "red spot," whose changes of color and aspect since its first appearance in 1878, together with the light it has thrown on the const.i.tution of Jupiter"s disk, have all but created a new Jovian literature, so thoroughly and so frequently have they been discussed.

And, having noticed these recurring features, the observer will begin to note their relations to one another, and will thus be led to observe that some of them gradually drift apart, while others drift nearer; and after a time, without any aid from books or hints from observatories, he will discover for himself that there is a law governing the movements on Jupiter"s disk. Upon the whole he will find that the swiftest motions are near the equator, and the slowest near the poles, although, if he is persistent and has a good eye and a good instrument, he will note exceptions to this rule, probably arising, as Professor Hough suggests, from differences of alt.i.tude in Jupiter"s atmosphere. Finally, he will conclude that the colossal globe before him is, exteriorly at least, a vast ball of clouds and vapors, subject to tremendous vicissitudes, possibly intensely heated, and altogether different in its physical const.i.tution, although made up of similar elements, from the earth.

Then, if he chooses, he can sail off into the delightful cloud-land of astronomical speculation, and make of the striped and spotted sphere of Jove just such a world as may please his fancy--for a world of some kind it certainly is.

For many observers the satellites of Jupiter possess even greater attractions than the gigantic ball itself. As I have already remarked, their movements are very noticeable and lend a wonderful animation to the scene. Although they bear cla.s.sical names, they are almost universally referred to by their Roman numbers, beginning with the innermost, whose symbol is I, and running outward in regular order II, III, and IV.[5] The minute satellite much nearer to the planet than any of the others, which Mr. Barnard discovered with the Lick telescope in 1892, is called the fifth, although in the order of distance it would be the first. In size and importance, however, it can not rank with its comparatively gigantic brothers. Of course, no amateur"s telescope can afford the faintest glimpse of it.

[5] Their names, in the same order as their numbers, are Io, Europa, Ganymede, and Callisto.

Satellite I, situated at a mean distance of 261,000 miles from Jupiter"s center--about 22,000 miles farther than the moon is from the earth--is urged by its master"s overpowering attraction to a speed of 320 miles per minute, so that it performs a complete revolution in about forty-two hours and a half. The others, of course, move more slowly, but even the most distant performs its revolution in several hours less than sixteen days. The plane of their orbits is presented edgewise toward the earth, from which it follows that they appear to move back and forth nearly in straight lines, some apparently approaching the planet, while others are receding from it. The changes in their relative positions, which can be detected from hour to hour, are very striking night after night, and lead to a great variety of arrangements always pleasing to the eye.

The most interesting phenomena that they present are their transits and those of their round, black shadows across the face of the planet; their eclipses by the planet"s shadow, when they disappear and afterward reappear with astonishing suddenness; and their occultations by the globe of Jupiter. Upon the whole, the most interesting thing for the amateur to watch is the pa.s.sage of the shadows across Jupiter. The distinctness with which they can be seen when the air is steady is likely to surprise, as it is certain to delight, the observer. When it falls upon a light part of the disk the shadow of a satellite is as black and sharply outlined as a drop of ink; on a dark-colored belt it can not so easily be seen.

It is more difficult to see the satellites themselves in transit. There appears to be some difference among them as to visibility in such circ.u.mstances. Owing to their luminosity they are best seen when they have a dark belt for a background, and are least easily visible when they appear against a bright portion of the planet. Every observer should provide himself with a copy of the American Ephemeris for the current year, wherein he will find all the information needed to enable him to identify the various satellites and to predict, by turning Washington mean time into his own local time, the various phenomena of the transits and eclipses.

While a faithful study of the phenomena of Jupiter is likely to lead the student to the conclusion that the greatest planet in our system is not a suitable abode for life, yet the problem of its future, always fascinating to the imagination, is open; and whosoever may be disposed to record his observations in a systematic manner may at least hope to render aid in the solution of that problem.

Saturn ranks next to Jupiter in attractiveness for the observer with a telescope. The rings are almost as mystifying to-day as they were in the time of Herschel. There is probably no single telescopic view that can compare in the power to excite wonder with that of Saturn when the ring system is not so widely opened but that both poles of the planet project beyond it. One returns to it again and again with unflagging interest, and the beauty of the spectacle quite matches its singularity.

When Saturn is in view the owner of a telescope may become a recruiting officer for astronomy by simply inviting his friends to gaze at the wonderful planet. The silvery color of the ball, delicately chased with half-visible shadings, merging one into another from the bright equatorial band to the bluish polar caps; the grand arch of the rings, sweeping across the planet with a perceptible edging of shadow; their sudden disappearance close to the margin of the ball, where they go behind it and fall straightway into night; the manifest contrast of brightness, if not of color, between the two princ.i.p.al rings; the fine curve of the black line marking the 1,600-mile gap between their edges--these are some of the elements of a picture that can never fade from the memory of any one who has once beheld it in its full glory.

[Ill.u.s.tration: SATURN SEEN WITH A FIVE-INCH TELESCOPE.]

Saturn"s moons are by no means so interesting to watch as are those of Jupiter. Even the effect of their surprising number (raised to nine by Professor Pickering"s discovery in 1899 of a new one which is almost at the limit of visibility, and was found only with the aid of photography) is lost, because most of them are too faint to be seen with ordinary telescopes, or, if seen, to make any notable impression upon the eye.

The two largest--t.i.tan and j.a.petus--are easily found, and t.i.tan is conspicuous, but they give none of that sense of companionship and obedience to a central authority which strikes even the careless observer of Jupiter"s system. This is owing partly to their more deliberate movements and partly to the inclination of the plane of their orbits, which seldom lies edgewise toward the earth.

[Ill.u.s.tration: POLAR VIEW OF SATURN"S SYSTEM.

The orbits of the five nearest satellites are shown. The dotted line outside the rings shows Roche"s limit.]

But the charm of the peerless rings is abiding, and the interest of the spectator is heightened by recalling what science has recently established as to their composition. It is marvelous to think, while looking upon their broad, level surfaces--as smooth, apparently, as polished steel, though thirty thousand miles across--that they are in reality vast circling currents of meteoritic particles or dust, through which run immense waves, condensation and rarefaction succeeding one another as in the undulations of sound. Yet, with all their inferential tumult, they may actually be as soundless as the depths of interstellar s.p.a.ce, for Struve has shown that those spectacular rings possess no appreciable ma.s.s, and, viewed from Saturn itself, their (to us) gorgeous seeming bow may appear only as a wreath of shimmering vapor spanning the sky and paled by the rivalry of the brighter stars.

In view of the theory of tidal action disrupting a satellite within a critical distance from the center of its primary, the thoughtful observer of Saturn will find himself wondering what may have been the origin of the rings. The critical distance referred to, and which is known as Roche"s limit, lies, according to the most trustworthy estimates, just outside the outermost edge of the rings. It follows that if the matter composing the rings were collected into a single body that body would inevitably be torn to pieces and scattered into rings; and so, too, if instead of one there were several or many bodies of considerable size occupying the place of the rings, all of these bodies would be disrupted and scattered. If one of the present moons of Saturn--for instance, Mimas, the innermost hitherto discovered--should wander within the magic circle of Roche"s limit it would suffer a similar fate, and its particles would be disseminated among the rings.

One can hardly help wondering whether the rings have originated from the demolition of satellites--Saturn devouring his children, as the ancient myths represent, and encircling himself, amid the fury of destruction, with the dust of his disintegrated victims. At any rate, the amateur student of Saturn will find in the revelations of his telescope the inspirations of poetry as well as those of science, and the bent of his mind will determine which he shall follow.

Professor Pickering"s discovery of a ninth satellite of Saturn, situated at the great distance of nearly eight million miles from the planet, serves to call attention to the vastness of the "sphere of activity"

over which the ringed planet reigns. Surprising as the distance of the new satellite appears when compared with that of our moon, it is yet far from the limit where Saturn"s control ceases and that of the sun becomes predominant. That limit, according to Prof. Asaph Hall"s calculation, is nearly 30,000,000 miles from Saturn"s center, while if our moon were removed to a distance a little exceeding 500,000 miles the earth would be in danger of losing its satellite through the elopement of Artemis with Apollo.

Although, as already remarked, the satellites of Saturn are not especially interesting to the amateur telescopist, yet it may be well to mention that, in addition to t.i.tan and j.a.petus, the satellite named Rhea, the fifth in order of distance from the planet, is not a difficult object for a three-or four-inch telescope, and two others considerably fainter than Rhea--Dione (the fourth) and Tethys (the third)--may be seen in favorable circ.u.mstances. The others--Mimas (the first), Enceladus (the second), and Hyperion (the seventh)--are beyond the reach of all but large telescopes. The ninth satellite, which has received the name of Ph[oe]be, is much fainter than any of the others, its stellar magnitude being reckoned by its discoverer at about 15.5.

Mars, the best advertised of all the planets, is nearly the least satisfactory to look at except during a favorable opposition, like those of 1877 and 1892, when its comparative nearness to the earth renders some of its characteristic features visible in a small telescope. The next favorable opposition will occur in 1907.

When well seen with an ordinary telescope, say a four-or five-inch gla.s.s, Mars shows three peculiarities that may be called fairly conspicuous--viz., its white polar cap, its general reddish, or orange-yellow, hue, and its dark markings, one of the clearest of which is the so-called Syrtis Major, or, as it was once named on account of its shape, "Hourgla.s.s Sea." Other dark expanses in the southern hemisphere are not difficult to be seen, although their outlines are more or less misty and indistinct. The gradual diminution of the polar cap, which certainly behaves in this respect as a ma.s.s of snow and ice would do, is a most interesting spectacle. As summer advances in the southern hemisphere of Mars, the white circular patch surrounding the pole becomes smaller, night after night, until it sometimes disappears entirely even from the ken of the largest telescopes. At the same time the dark expanses become more distinct, as if the melting of the polar snows had supplied them with a greater depth of water, or the advance of the season had darkened them with a heavier growth of vegetation.

[Ill.u.s.tration: MARS SEEN WITH A FIVE-INCH TELESCOPE.]

The phenomena mentioned above are about all that a small telescope will reveal. Occasionally a dark streak, which large instruments show is connected with the mysterious system of "ca.n.a.ls," can be detected, but the "ca.n.a.ls" themselves are far beyond the reach of any telescope except a few of the giants handled by experienced observers. The conviction which seems to have forced its way into the minds even of some conservative astronomers, that on Mars the conditions, to use the expression of Professor Young, "are more nearly earthlike than on any other of the heavenly bodies which we can see with our present telescopes," is sufficient to make the planet a center of undying interest notwithstanding the difficulties with which the amateur is confronted in his endeavors to see the details of its markings.

THE ILLUMINATION OF VENUS"S ATMOSPHERE AT THE BEGINNING OF HER TRANSIT ACROSS THE SUN.

In Venus "the fatal gift of beauty" may be said, as far as our observations are concerned, to be matched by the equally fatal gift of brilliance. Whether it be due to atmospheric reflection alone or to the prevalence of clouds, Venus is so bright that considerable doubt exists as to the actual visibility of any permanent markings on her surface.

The detailed representations of the disk of Venus by Mr. Percival Lowell, showing in some respects a resemblance to the stripings of Mars, can not yet be accepted as decisive. More experienced astronomers than Mr. Lowell have been unable to see at all things which he draws with a fearless and unhesitating pencil. That there are some shadowy features of the planet"s surface to be seen in favourable circ.u.mstances is probable, but the time for drawing a "map of Venus" has not yet come.

The previous work of Schiaparelli lends a certain degree of probability to Mr. Lowell"s observations on the rotation of Venus. This rotation, according to the original announcement of Schiaparelli, is probably performed in the same period as the revolution around the sun. In other words, Venus, if Schiaparelli and Lowell are right, always presents the same side to the sun, possessing, in consequence, a day hemisphere and a night hemisphere which never interchange places. This condition is so antagonistic to all our ideas of what const.i.tutes habitability for a planet that one hesitates to accept it as proved, and almost hopes that it may turn out to have no real existence. Venus, as the twin of the earth in size, is a planet which the imagination, warmed by its sunny aspect, would fain people with intelligent beings a little fairer than ourselves; but how can such ideas be reconciled with the picture of a world one half of which is subjected to the merciless rays of a never-setting sun, while the other half is buried in the fearful gloom and icy chill of unending night?

Any amateur observer who wishes to test his eyesight and his telescope in the search of shades or markings on the disk of Venus by the aid of which the question of its rotation may finally be settled should do his work while the sun is still above the horizon. Schiaparelli adopted that plan years ago, and others have followed him with advantage. The diffused light of day serves to take off the glare which is so serious an obstacle to the successful observation of Venus when seen against a dark sky. Knowing the location of Venus in the sky, which can be ascertained from the Ephemeris, the observer can find it by day. If his telescope is not permanently mounted and provided with "circles" this may not prove an easy thing to do, yet a little perseverance and ingenuity will effect it. One way is to find, with a star chart, some star whose declination is the same, or very nearly the same, as that of Venus, and which crosses the meridian say twelve hours ahead of her.

Then set the telescope upon that star, when it is on the meridian at night, and leave it there, and the next day, twelve hours after the star crossed the meridian, look into your telescope and you will see Venus, or, if not, a slight motion of the tube will bring her into view.

For many amateurs the phases of Venus will alone supply sufficient interest for telescopic observation. The changes in her form, from that of a round full moon when she is near superior conjunction to the gibbous, and finally the half-moon phase as she approaches her eastern elongation, followed by the gradually narrowing and lengthening crescent, until she is a mere silver sickle between the sun and the earth, form a succession of delightful pictures.

Not very much can be said for Mercury as a telescopic object. The little planet presents phases like those of Venus, and, according to Schiaparelli and Lowell, it resembles Venus in its rotation, keeping always the same side to the sun. In fact, Schiaparelli"s discovery of this peculiarity in the case of Mercury preceded the similar discovery in the case of Venus. There are markings on Mercury which have reminded some astronomers of the moon, and there are reasons for thinking that the planet can not be a suitable abode for living beings, at least for beings resembling the inhabitants of the earth.

Ura.n.u.s and Neptune are too far away to present any attraction for amateur observers.

CHAPTER IX

THE MOUNTAINS AND PLAINS OF THE MOON, AND THE SPECTACLES OF THE SUN

"... the Moon, whose orb The Tuscan artist views through optic gla.s.s At evening from the top of Fesole, Or in Valdarno, to descry new lands, Rivers or mountains in her spotty globe."--PARADISE LOST.

The moon is probably the most interesting of all telescopic objects.

This arises from its comparative nearness to the earth. A telescope magnifying 1,000 diameters brings the moon within an apparent distance of less than 240 miles. If telescopes are ever made with a magnifying power of 10,000 diameters, then, provided that atmospheric difficulties can be overcome, we shall see the moon as if it were only about twenty miles off, and a sensitive astronomer might be imagined to feel a little hesitation about gazing so closely at the moon--as if he were peering into a neighbor world"s window.

But a great telescope and a high magnifying power are not required to interest the amateur astronomer in the study of the moon. Our three-inch telescope is amply sufficient to furnish us with entertainment for many an evening while the moon is running through its phases, and we shall find delight in frequently changing the magnifying power as we watch the lunar landscapes, because every change will present them in a different aspect.

It should be remembered that a telescope, unless a terrestrial eyepiece or prism is employed, reverses such an object as the moon top for bottom. Accordingly, if the moon is on or near the meridian when the observations are made, we shall see the north polar region at the bottom and the south polar region at the top. In other words, the face of the moon as presented in the telescope will be upside down, north and south interchanging places as compared with their positions in a geographical map. But east and west remain unaltered in position, as compared with such a map--i. e., the eastern hemisphere of the moon is seen on the right and the western hemisphere on the left. It is the moon"s western edge that catches the first sunlight when "new moon" begins, and, as the phase increases, pa.s.sing into "first quarter" and from that to "full moon," the illumination sweeps across the disk from west to east.

[Ill.u.s.tration: LUNAR CHART NO. 1, NORTHWEST QUARTER.]

The narrow sickle of the new moon, hanging above the sunset, is a charming telescopic sight. Use a low power, and observe the contrast between the bright, smooth round of the sunward edge, which has almost the polish of a golden rim, and the irregular and delicately shaded inner curve, where the adjacent mountains and plains picturesquely reflect or subdue the sunshine. While the crescent grows broader new objects are continually coming into view as the sun rises upon them, until at length one of the most conspicuous and remarkable of the lunar "seas," the _Mare Crisium_, or Sea of Crises, lies fully displayed amid its encircling peaks, precipices, and craters. The _Mare Crisium_ is all in the sunlight between the third and fourth day after "new moon." It is about 350 by 280 miles in extent, and if ever filled with water must have been a very deep sea, since its arid bed lies at a great but not precisely ascertained depth below the general level of the moon. There are a few small craters on the floor of the _Mare Crisium_, the largest bearing the name of Picard, and its borders are rugged with mountains.

On the southwestern side is a lofty promontory, 11,000 feet in height, called Cape Agarum. At the middle of the eastern side a kind of bay opens deep in the mountains, whose range here becomes very narrow.

Southeast of this bay lies a conspicuous bright point, the crater mountain Proclus, on which the sun has fully risen in the fourth day of the moon, and which reflects the light with extraordinary liveliness.

Adjoining Proclus on the east and south is a curious, lozenge-shaped flat, broken with short, low ridges, and possessing a most peculiar light-brown tint, easily distinguished from the general color tone of the lunar landscapes. It would be interesting to know what was pa.s.sing in the mind of the old astronomer who named this singular region _Palus Somnii_. It is not the only spot on the moon which has been called a "marsh," and to which an unexplained connection with dreams has been ascribed.

Nearly on the same meridian with Proclus, at a distance of about a hundred miles northward, lies a fine example of a ring mountain, rather more than forty miles in diameter, and with peak-tipped walls which in some places are 13,000 feet in height, as measured from the floor within. This is Macrobius. There is an inconspicuous central mountain in the ring.

North of the _Mare Crisium_, and northwest of Macrobius, we find a much larger mountain ring, oblong in shape and nearly eighty miles in its greatest diameter. It is named Cleomenes. The highest point on its wall is about 10,000 feet above the interior. Near the northeast corner of the wall yawns a huge and very deep crater, Tralles, while at the northern end is another oblong crater mountain called Burckhardt.

From Cleomenes northward to the pole, or to the northern extremity of the crescent, if our observations are made during new moon, the ground appears broken with an immense number of ridges, craters, and mountain rings, among which we may telescopically wander at will. One of the more remarkable of these objects, which may be identified with the aid of Lunar Chart No. 1, is the vast ringed plain near the edge of the disk, named Gauss. It is more than a hundred and ten miles in diameter. Owing to its situation, so far down the side of the lunar globe, it is foreshortened into a long ellipse, although in reality it is nearly a circle. A chain of mountains runs north and south across the interior plain. Geminus, Berzelius, and Messala are other rings well worth looking at. The remarkable pair called Atlas and Hercules demand more than pa.s.sing attention. The former is fifty-five and the latter forty-six miles in diameter. Each sinks 11,000 feet below the summit of the loftiest peak on its encircling wall. Both are full of interesting detail sufficient to occupy the careful observer for many nights. The broad ring bearing the name of Endymion is nearly eighty miles in diameter, and has one peak 15,000 feet high. The interior plain is flat and dark. Beyond Endymion on the edge of the disk is part of a gloomy plain called the _Mare Humboltianum_.

After glancing at the crater-shaped mountains on the western and southern border of the _Mare Crisium_, Alhazen, Hansen, Condorcet, Firmicus, etc., we pa.s.s southward into the area covered in Lunar Chart No. 2. The long dark plain south of the _Mare Crisium_ is the _Mare Fecunditatis_, though why it should have been supposed to be particularly fecund, or fertile, is by no means clear. On the western border of this plain, about three hundred miles from the southern end of the _Mare Crisium_, is the mountain ring, or circ.u.mvallation, called Langrenus, about ninety miles across and in places 10,000 feet high.

There is a fine central mountain with a number of peaks. Nearly a hundred miles farther south, on the same meridian, lies an equally extensive mountain ring named Vendelinus. The broken and complicated appearance of its northern walls will command the observer"s attention.

Another similar step southward, and still on the same meridian brings us to a yet finer mountain ring, slightly larger than the others, and still more complicated in its walls, peaks, and terraces, and in its surroundings of craters, gorges, and broken ridges. This is Petavius.

West of Petavius, on the very edge of the disk, is a wonderful formation, a walled plain named Humboldt, which is looked down upon at one point near its eastern edge by a peak 16,000 feet in height. About a hundred and forty miles south of Petavius is the fourth great mountain ring lying on the same meridian. Its name is Furnerius. Look particularly at the brilliantly shining crater on the northeast slope of the outer wall of Furnerius.

[Ill.u.s.tration: LUNAR CHART NO. 2, SOUTHWEST QUARTER.]

© 2024 www.topnovel.cc