Q. E. D., or New Light on the Doctrine of Creation.
by George McCready Price.
Preface
The great world disaster, ushered in with the dawn of that August morning in 1914, has already brought revolutionary changes in many departments of our thinking. But not the least of the surprises awaiting an amazed world, whenever attention can again be directed to such subjects, will be the realization that we have now definitely outgrown many notions in science and philosophy which in the old order of things were supposed to have been eternally settled.
There are but two theories regarding the origin of our world and of the various forms of plants and animals upon it, Creation and Evolution,--the latter a.s.suming many modifications.
The essential idea of the Evolution theory is _uniformity_; that is, it seeks to show that life in all its various forms and manifestations probably originated by causes similar to or identical with forces and processes now prevailing. It teaches the absolute supremacy and the past continuity of natural law as now observed. It says that the changes now going on in our modern world have always been in action and that these present-day natural changes and processes are as much a part of the origin of things as anything that ever took place in the past. In short, Evolution as a philosophy of nature is an effort to smooth out all distinction between Creation and the ordinary processes of nature that are now under the regime of "natural law."
On the other hand, the essential idea of the doctrine of Creation is that, back at a period called the "beginning," forces and powers were brought into exercise and results were accomplished that have not since been exercised or accomplished. That is, the origin of the first organic forms, indeed of the whole world as we know it, was essentially and radically _different_ from the ways in which these forms are perpetuated and the world sustained to-day. _Time_ is in no way the essential idea in the problem. The question of _how much time_ was occupied in the work of Creation is of no importance, neither is the question of _how long ago_ it took place. The one essential idea is that in its nature Creation is essentially inscrutable; we can never hope to know just how it was accomplished; we cannot expect to know the process or the details, for we have nothing with which to measure it. The one essential thing in the doctrine of Creation is that the origin of our world and of the things upon it came about at some period of time in the past by a direct and unusual manifestation of Divine power; and that since this original Creation other and different forces and powers have prevailed to sustain and perpetuate the forms of life and indeed the entire world as then called into existence.
Accordingly, we might establish the Evolution doctrine by showing that matter can be made _de novo_, that energy can be created or increased in amount, that life can be made from the not-living, and that new and distinct forms of life can be produced in modern times,--all by natural law as now prevailing.
Or we can practically demonstrate the historical reality of a direct Creation at some time in the past, if we can show that the net results of all modern science tend to prove that the forces and processes now in operation can never account for the origin of things; that matter, and energy, and life, and the various forms of life must all have had an origin essentially different from anything now going on around us.
This indicates the line of argument adopted in the following pages.
The Evolution theory has been widely discussed and accepted in modern times. Indeed it has had a fair chance and an open field for several decades. What is the present situation of the controversy? The friends of the Bible and of old-fashioned Christianity need to know the real facts of the present situation.
Every now and then the news despatches report that the great Professor So-and-so has at last really produced life from the not-living, or has obtained some absolutely new type of life by some wonderful feat of breeding. Or some geologist or archaeologist has discovered in the earth the missing link which connects the higher forms of life with the lower, or which bridges over the gulf between man and the apes. Thus many people who get their "science" through the daily papers really believe that these long-looked-for proofs of Evolution have at last been demonstrated, and hence they receive without question the confident a.s.sertions of the camp followers of science published at s.p.a.ce rates in the Sunday supplements that all intelligent men of to-day have long ago accepted the Evolution doctrine.
But in spite of the quick dissemination of news and the universal spread of education, it seems but a slow process for the really important discoveries of modern science to filter down through such media as the current periodicals to the rank and file of society. The situation seems to ill.u.s.trate the old adage that a lie will travel round the world while truth is getting on her shoes. _Thus it happens that the common people are still being taught in this second decade of the twentieth century many things that real scientists outgrew nearly a generation ago, and a.s.sertions are still being bandied around in the individual sciences which are wholly unwarranted by a general survey of the whole field of modern natural science_. Indeed, in almost every one of the separate sciences the arguments upon which the theory of Evolution gained its popularity a generation or so ago are now known by the various specialists to have been blunders, or mistakes, or hasty conclusions of one kind or another. Thus the market value of all the various subsidiary stocks of the Evolution group has been steadily declining in their respective home markets, and now stands away below par; while strange to say the stock of the central holding company itself is still quoted at fict.i.tiously high figures.
This curious--not to say deplorable--situation has developed largely because of the modern system of strict specialization in the various departments of science. Each scientist feels compelled by an unwritten but rigid code of professional ethics to confine himself strictly to the cultivation of the little plot of ground on which he happens to be working, and is forbidden to express an opinion about what he may know has been discovered on another plot of ground on which his neighbor is working, except by express permission. In other words, science teaching has now become strictly a matter of authority, this authority being vested in the various specialists; and n.o.body is permitted to look at it in a broad way, or to frame a general induction from the sum of all the facts of nature now discovered, under penalty of scientific excommunication. The scientific code of ethics forbids any general view of the woods: each man must confine himself to the observation of the particular tree in front of his own nose.
But these pages have been prepared under the idea that it is high time to take a more general survey of the geography, time to take our eyes off the various individual trees, and to look at the woods. Perhaps in some respects they may be regarded as too technical for ordinary readers. But if this is the case, it is because the writer had to choose between this somewhat technical treatment of the subject and the alternative danger of making loose and inaccurate statements or dealing in glittering generalities too vague to carry conviction. As it is, the writer is here trying to give directly to the general public the results of years of special research in correlating the data from many scattered departments of science,--results that most scientists would feel obliged to reserve for the select few of some learned society, to be published subsequently in the Reports of its "Transactions," and to find their way after years of delay into the main currents of human thought. But these dilatory methods of professional pedantry, miscalled "ethics," shall not longer be allowed to delay the publication of highly important principles which the public are ent.i.tled to know at once, and to know at first hand. Then, too, it is more than doubtful if any purely academic body could be found willing to become responsible for giving to the world conclusions so contrary to the vogue of the present day.
That these brief chapters may clear up the doubts of some, and encourage the faith of many, is the object of their publication in this non-professional form.
G. McC. P.
I
MATTER AND ITS ORIGIN
When we were told by a prominent scientist just the other day that "electricity is now known to be molecular in structure," it almost took our breath away. And when we were informed that certain well-known chemical elements had been detected in the very act of being changed over into other well-known elements, with the prospect of such a transformation of the elements being quite the normal thing throughout nature, the very earth seemed to be slipping away from under our feet.
Some of the closely related discoveries, such as the fact that the X-rays show a spectrum susceptible of examination, were not so disconcerting in themselves; but the marvellous pictures of the structure of the atom elicited by these discoveries made many good people almost question whether our venerable experimenters had not been indulging in pipe dreams amid their laboratory work.
Do we, then, begin to understand the real composition of matter? Does it have component parts, in the materialistic sense; or is what we call _matter_ only a mysterious manifestation of energy? And if the latter be our answer, can we hope to settle the problem objectively and so conclusively that it will stay settled? In short, do we, regarding these border-line subjects between metaphysics and natural science, know anything more than our fathers and our grandfathers?
It will be convenient to consider these problems under two heads: the composition of matter, and the origin of matter.
II
1. It was long ago recognized that matter must be composed of particles which are driven farther apart by heat and are brought closer together by cold, thus laying the foundation for the theory of the molecular composition of matter. But not until the time of Dalton, about a hundred years ago, was it proved that the molecule itself, the unit of physical change, is capable of definite division into atoms, the units of chemical change. This conception of the molecules and atoms as the ultimate units of which matter is composed maintained its place until the discovery of radioactivity and its a.s.sociated phenomena, about 1896; since which time we have definitely ascertained that even the atoms are separable into still smaller units, and that possibly these units are _all alike_. On this last possibility, it would surely be a most amazing fact if such mult.i.tudinous "properties" of bodies could be produced merely by variations in the arrangements of these ultimate units into atoms, or in some other way which produces vast differences in properties by combinations of units that are nevertheless mere duplicates of one another.
As hydrogen is the lightest of the elements, it has been a favorite theory with scientists that the various elements are all composed of combinations of hydrogen atoms. But since many of the elements have atomic weights which cannot be made exact multiples of that of hydrogen, it has been felt that there must be some other smaller unit than the hydrogen atom; or else that these hydrogen atoms themselves change in weight when they combine to form other atoms. But ma.s.s seems to be the one unchangeable characteristic of matter; hence it was felt that any change of weight is almost unthinkable, and so a solution was sought in the direction of still further dividing the hydrogen atom, the smallest unit concerned in chemical change, as then understood. But now the facts and principles brought to light in connection with the studies of radioactivity have settled it that we actually do have a much smaller unit than the hydrogen atom, one of only about 1/1760 its ma.s.s, in fact; and that this smallest of the small things of nature is none other than a particle of negative electricity, now called an _electron_.
That the atoms of all the elements must have a common unit of composition, that they behave as if composed of ultimate particles that may be regarded as duplicates of one another, has long been regarded as an inevitable conclusion from the Periodic Law of Mendeleef. This law says that the physical as well as the chemical properties of the various elements depend upon their atomic weights, or as it is stated in the language of mathematics, the properties of an element are functions of its atomic weight. This fact of the variation in the properties of elements in accord with their atomic weights has been even more strikingly ill.u.s.trated by the behavior of discharges of electricity through rarified gases, as well as by the facts of radioactivity. To quote the words of Sir J.J. Thompson, "The transparency of bodies to Roentgen rays, to cathode rays, to the rays emitted by radioactive substances, the quality of the secondary radiation emitted by the different elements, are all determined by the atomic weight of the element."[1]
[Footnote 1: Encyclopaedia Britannica, Vol. XVII, 891. Cambridge Edition.]
Just recently we have had opened up before us a still more intimate inner-circle view of the composition of matter. H.G.J. Moseley, a young man only twenty-six years of age, at an English university, devised a method of examining the spectra of the various elements by means of the X-rays. He found in this way that the princ.i.p.al lines of these various spectra are connected by a remarkably simple arithmetical relationship; for when the elements are arranged in the order of their atomic weights, they show a graded advance from one to another equal to successive additions of the same electrical unit charge, thus indicating a real gamut of the elements that we can run up by adding or run down by subtracting the same unit of electrical charge. It is pitiable to have to record that next year this scientific genius was killed in the ill-fated Gallipoli expedition against Turkey.
Thus in many fairly independent ways we are brought around to this same idea of a common structure underlying all the many seeming diversities manifested by what we call matter.
The phenomena of radioactivity were discovered accidentally in 1896 by the French chemist Becquerel. Many investigators immediately began working along this promising line, and two years later Madam Curie, in a.s.sociation with others, discovered the new element radium. Soon it was discovered that radium and several other substances are continually giving off radiations at an enormous rate, that no change of chemical combination, no physical change of condition appears to have the slightest effect in slowing or increasing this discharge of emanations, while no scientific apparatus yet devised can detect any change in the substances left behind either in respect to weight or any other properties as the result of these enormous losses of energy. Accordingly some people not unnaturally were ready to draw the conclusion that those most firmly established laws of physics and chemistry, the laws of the conservation of energy and of matter, were overthrown by this astonishing behavior of these newly discovered substances. However, only a few more years of study and investigation were necessary to prove that this last conclusion was wholly unwarranted; and to-day these laws of the conservation of energy and of matter are more firmly established than ever.
The thing that has gone by the board is the old idea of the atoms as the indivisible and irreducible minima of the material universe. For not only do all the radioactive substances give off particles of helium gas positively electrified, but _all bodies, no matter what their composition_, can by suitable treatment, such as exposing them to ultra-violet light, or raising them to incandescence, be made to _give off electrons_ or negatively charged particles, and _these electrons are always the same no matter from what kind of substance they come_. In a somewhat similar way, we always get positively electrified particles of the ma.s.s of the hydrogen atom, or about 1,760 times the ma.s.s of the electron, whenever we send an electric charge through a gas at very low pressure, _no matter what the kind of gas_. Whether or not these positive units will yet prove susceptible of being split up into smaller particles comparable to the electrons, is merely a subject for conjecture. We have no proof that they will. At the present time what we call matter seems to be composed of these positive units and of the electrons which are about 1/1760 as great; and in the present state of our knowledge these facts suffice to explain all the properties of matter. Thus we can either say that electricity is composed of matter, or say that matter is composed of electricity; and human language at best is such a clumsy vehicle of thought that scientifically and philosophically the one statement is as correct and as reasonable as the other.
And probably we shall never be able to learn any more than this. We have arrived at a sort of box-within-a-box theory of the make-up of matter.
By a very elaborate system of unpacking, or by some violent external force that makes the inside burst open, as it were, we seem to be able to make pieces fly off from the atoms, these pieces being then projected into s.p.a.ce with enormous force and velocity. There are theories galore of the structure of the atom; but as Prof. E.P. Lewis has said, most of these theories are so impossible as to be absurd, or so speculative that "they suggest no experimental tests for their validity."[2] Just at present Rutherford"s theory of the structure of the atom is quite popular. This postulates a nucleus composed of a group of positive units and electrons, with an excess of the positive charges equal to half the atomic weight, with an equal number of electrons circulating about this nucleus in rings. Bohr"s theory, which is not very different from this, has perhaps even more friends, and it is supported by the remarkable discoveries of the lamented Moseley. But we must not take such theories too seriously. As Kayser has said, any true theory of the make-up of the atoms must a.s.sume an absolutely full and perfect knowledge of all electrical and optical processes, and is therefore beyond our dreams. Or as Professor Planck said in his Columbia lectures, we are not ent.i.tled to hope that we shall ever be able to represent truly through any physical formulae the internal structure of the atom.
[Footnote 2: _Nature_, April 5, 1917.]
III
2. We must now take up the second phase of our subject, the problem of the origin of matter.
Before we knew anything of radioactivity we could have dismissed such a subject briefly by quoting the law of the conservation of matter, which says that matter can neither be created nor destroyed by any means known to science. By our knowledge of radioactivity we can make our answer a little more learned, a little less abrupt, but none the less discouraging to the advocate of the development hypothesis. We can tell how the elements of high atomic weight, such as uranium and thorium, are constantly giving off particles and are thus by loss or decomposition being changed over into other elements, such as radium, niton, polonium and lead. But our new knowledge compels us ultimately to give the same answer as before, namely, that _we still do not know how matter ever could have originated_, except that "in the beginning" it was called into existence by the fiat of Him whom we Christians worship as our G.o.d, the Creator. Thus we reach the conception of the universe as that of a great clock gradually running down, which is certainly the ant.i.thesis of that picture so long held before us by the advocates of the development theory.
Uranium is a rather rare element, though known for over a hundred years, and has an atomic weight of 238.5. In decomposing it gives off first a helium atom, weight 4; and after this action has been repeated three times the substance left is radium, atomic weight about 226.4. Thus radium is simply uranium after it has lost three helium atoms. Radium in its disintegration gives off three kinds of particles, namely, helium atoms (positively electrified), [Greek: b]-rays or electrons, and [Greek: g]-rays, the latter being identical with the X-rays, and having penetrating power sufficient to carry them through six inches of lead or a foot of solid iron. The final stage in this process of disintegration is the ordinary element lead, in which condition the atoms seem to have reached relative stability. Whether or not our stock of lead, with our other common elements that are not radioactive, was originally produced by the disintegration of these other elements, is merely a matter of conjecture. We know nothing at all about it.
The length of time it takes for half the atoms of an element to change is called its "life" or period. The periods of most of the radioactive substances have been calculated, that of uranium being very long. The calculated period of radium is 2,500 years, while that of polonium is only 202 days, and that of niton 5.6 days. These unquestioned facts, together with the enormous amount of heat evolved by the disintegration of these substances (that from radium being about 250,000 times the heat evolved by the combustion of carbon), have thrown a great deal of doubt upon the older estimates of the age of the earth.
The discussion of the details of these theories would be unprofitable.
But through the mists of all these conflicting theories and probabilities two facts of tremendous importance for our modern world emerge in clear relief, namely, that the grand law of the conservation of matter still holds true, and hence that _the matter of our world must have had an origin at some time in the past wholly different in degree and different in kind from any process going on around us that we call a natural process_. These elements of high atomic weight that break down into others of lower atomic weight may be so rare because they have been about all used up in this process. At any rate, so far from revealing the origin of matter as a process now going on, these phenomena are an objective demonstration that all matter is more or less unstable and liable under some unknown but ever-acting force to lose some portion of that fund of energy with which it seems to have been primarily endowed.
_Not the evolution of matter but the degeneration of matter_ is the plain and unescapable lesson to be drawn from these facts. The varieties of matter may change greatly, and one variety or one chemical element may be transformed into another. But this transformation _is by loss and not by gain_. It is degeneration and not upward evolution that is now opened up before our astonished eyes by this peep into the ultimate laboratories of nature; and he is surely a blind observer who cannot read in these facts the grand truth that all this substance called matter with which science deals in her manifold studies must at some time in the past, I care not when, have been _called into existence in some manner no longer operative_. The past eternity of matter, as well as its progressive development from the simple to the complex, seems manifestly out of consideration in view of the facts as we now know them. There is no ambiguity in the evidence. So far as modern science can throw light on the question, there must have been a real Creation of the materials of which our world is composed, a Creation wholly different both in kind and in degree from any process now going on.
IV
A supposed objection has been raised to this view, based on the vastness of the universe as we now know it. Whether or not the universe is really infinite in extent, it is certainly of an extent that is practically infinite, so far as our powers of observation or of reasoning are concerned. But this practically infinite universe is not a bit harder to account for than would be a definitely limited universe, say of the size of our solar system. If the spectroscope shows that the far distant parts of the universe contain many of the same elements as are found in our solar system, we need not be surprised, since all are alike the work of the same Creator. Nor would this fact that the universe seems to be composed of similar materials throughout tend in any way to prove that all these parts of the universe were brought into existence at the same time, nor yet that our solar system was refashioned out of some of the common stock of the universe already on hand, as the nebular hypothesis supposes. For all that we can tell to the contrary, it would seem probable that the materials of our solar system were called into existence expressly for the position they are now occupying; and this seems to be the plain import of the record in Genesis. Of one thing, however, we can be certain,--these materials must at some time have been called into existence by methods or ways that are no longer in operation around us. "In the beginning G.o.d created the heaven and the earth."
V
Some remarks are necessary here regarding the h.o.m.ogeneousness of matter, or the idea that the various elements are composed of primordial units which are themselves alike, mere duplicates of each other. If this should prove to be really the case, as seems to be quite likely in the light of the facts given above, would it not be a veritable triumph for materialism? By no means. On the contrary, I think I can show in a very few words not only that this h.o.m.ogeneousness of matter is the only rational view of the composition of the material universe, but also that it is the only view consistent with Christian Theism and with the doctrine of Creation.
The theory of the atoms with their inherent and unchangeable properties, which prevailed during the greater part of the nineteenth century, naturally led us to look upon these properties as inherent in the things themselves. This was indeed materialism. This view, however, constantly impelled us to find out the essential differences between the various kinds of atoms, so as to "account for" their varying behaviors. And no matter how far we push such inquiries, this materialistic att.i.tude of mind will control us so long as we think we are dealing with substances which are intrinsically different. If the differences are innate or inherent in the things themselves, we must naturally endeavor to find out why and how they are different; and no matter how far we go along this road we are always headed in the direction of stark materialism. On the other hand, to say that the "properties" of the atoms are not inherent in themselves, but are imposed on them by an external ceaselessly acting power, the will of the Creator, would be in full accord with Biblical theism; and then we might naturally say that the ultimate particles of which matter is composed may well be regarded as alike and mere duplicates of one another. And this, as we have seen, is just what modern discoveries in radioactivity are teaching us regarding the make-up of the substances that we call matter.