In the case of L. perenne, affairs are arranged more perfectly; for the stamens in the two forms stand at different heights, so that pollen from the anthers of the longer stamens will adhere to one part of an insect"s body, and will afterwards be brushed off by the rough stigmas of the longer pistils; whilst pollen from the anthers of the shorter stamens will adhere to a different part of the insect"s body, and will afterwards be brushed off by the stigmas of the shorter pistils; and this is what is required for the legitimate fertilisation of both forms. The corolla of L. perenne is more expanded than that of L.

grandiflorum, and the stigmas of the long-styled form do not diverge greatly from one another; nor do the stamens of either form. Hence insects, especially rather small ones, will not insert their proboscides between the stigmas of the long-styled form, nor between the anthers of either form (Figure 3.5), but will strike against them, at nearly right angles, with the backs of their head or thorax. Now, in the long-styled flowers, if each stigma did not rotate on its axis, insects in visiting them would strike their heads against the backs of the stigmas; as it is, they strike against that surface which is covered with papillae, with their heads already charged with pollen from the stamens of corresponding height borne by the flowers of the other form, and legitimate fertilisation is thus ensured.

Thus we can understand the meaning of the torsion of the styles in the long- styled flowers alone, as well as their divergence in the short-styled flowers.

One other point is worth notice. In botanical works many flowers are said to be fertilised in the bud. This statement generally rests, as far as I can discover, on the anthers opening in the bud; no evidence being adduced that the stigma is at this period mature, or that it is not subsequently acted on by pollen brought from other flowers. In the case of Cephalanthera grandiflora I have shown that precocious and partial self-fertilisation, with subsequent full fertilisation, is the regular course of events. (3/4. "Fertilisation of Orchids" page 108; 2nd edition 1877 page 84.) The belief that the flowers of many plants are fertilised in the bud, that is, are perpetually self-fertilised, is a most effectual bar to understanding their real structure. I am, however, far from wishing to a.s.sert that some flowers, during certain seasons, are not fertilised in the bud; for I have reason to believe that this is the case. A good observer, resting his belief on the usual kind of evidence, states that in Linum Austriac.u.m (which is heterostyled, and is considered by Planchon as a variety of L. perenne) the anthers open the evening before the expansion of the flowers, and that the stigmas are then almost always fertilised. (3/5. H. Lecoq "Etudes sur la Geogr.

Bot." 1856 tome 5 page 325.) Now we know positively that, so far from Linum perenne being fertilised by its own pollen in the bud, its own pollen is as powerless on the stigma as so much inorganic dust.



Linum flavum.

The pistil of the long-styled form of this species is nearly twice as long as that of the short-styled; the stigmas are longer and the papillae coa.r.s.er. In the short-styled form the stigmas diverge and pa.s.s out between the filaments, as in the previous species. The stamens in the two forms differ in length; and, what is singular, the anthers of the longer stamens are not so long as those of the other form; so that in the short-styled form both the stigmas and the anthers are shorter than in the long-styled form. The pollen-grains of the two forms do not differ in size. As this species is propagated by cuttings, generally all the plants in the same garden belong to the same form. I have inquired, but have never heard of its seeding in this country. Certainly my own plants never produced a single seed as long as I possessed only one of the two forms. After considerable search I procured both forms, but from want of time only a few experiments were made. Two plants of the two forms were planted some way apart in my garden, and were not covered by nets. Three flowers on the long- styled plant were legitimately fertilised with pollen from the short-styled plant, and one of them set a fine capsule. No other capsules were produced by this plant. Three flowers on the short-styled plant were legitimately fertilised with pollen from the long-styled, and all three produced capsules, containing respectively no less than 8, 9, and 10 seeds. Three other flowers on this plant, which had not been artificially fertilised, produced capsules containing 5, 1, and 5 seeds; and it is quite possible that pollen may have been brought to them by insects from the long-styled plant growing in the same garden. Nevertheless, as they did not yield half the number of seeds compared with the other flowers on the same plant which had been artificially and legitimately fertilised, and as the short-styled plants of the two previous species apparently evince some slight capacity for fertilisation with their own-form pollen, these three capsules may have been the product of self-fertilisation.

Besides the three species now described, the yellow-flowered L. corymbiferum is certainly heterostyled, as is, according to Planchon, L. salsoloides. (3/6.

Hooker"s "London Journal of Botany" 1848 volume 7 page 174.) This botanist is the only one who seems to have inferred that heterostylism might have some important functional bearing. Dr. Alefeld, who has made a special study of the genus, says that about half of the sixty-five species known to him are heterostyled. (3/7. "Botanische Zeitung" September 18, 1863 page 281.) This is the case with L. trigynum, which differs so much from the other species that it has been formed by him into a distinct genus. (3/8. It is not improbable that the allied genus, Hugonia, is heterostyled, for one species is said by Planchon (Hooker"s "London Journal of Botany" 1848 volume 7 page 525) to be provided with "staminibus exsertis;" another with "stylis staminibus longioribus," and another has "stamina 5, majora, stylos longe superantia.") According to the same author, none of the species which inhabit America and the Cape of Good Hope are heterostyled.

I have examined only three h.o.m.ostyled species, namely, L. usitatissimum, angustifolium, and cathartic.u.m. I raised 111 plants of a variety of the first- named species, and these, when protected under a net, all produced plenty of seed. The flowers, according to H. Muller, are frequented by bees and moths.

(3/9. "Die Befruchtung der Blumen" etc. page 168.) With respect to L.

cathartic.u.m, the same author shows that the flowers are so constructed that they can freely fertilise themselves; but if visited by insects they might be cross- fertilised. He has, however, only once seen the flowers thus visited during the day; but it may be suspected that they are frequented during the night by small moths for the sake of the five minute drops of nectar secreted. Lastly, L.

Lewisii is said by Planchon to bear on the same plant flowers with stamens and pistils of the same height, and others with the pistils either longer or shorter than the stamens. This case formerly appeared to me an extraordinary one; but I am now inclined to believe that it is one merely of great variability. (3/10.

Planchon in Hooker"s "London Journal of Botany" 1848 volume 7 page 175. See on this subject Asa Gray in "American Journal of Science" volume 36 September 1863 page 284.)

PULMONARIA (BORAGINEAE).

Pulmonaria officinalis.

Hildebrand has published a full account of this heterostyled plant. (3/11.

"Botanische Zeitung" 1865 January 13 page 13.) The pistil of the long-styled form is twice as long as that of the short-styled; and the stamens differ in a corresponding, though converse, manner. There is no marked difference in the shape or state of surface of the stigma in the two forms. The pollen-grains of the short-styled form are to those of the long-styled as 9 to 7, or as 100 to 78, in length, and as 7 to 6 in breadth. They do not differ in the appearance of their contents. The corolla of the one form differs in shape from that of the other in nearly the same manner as in Primula; but besides this difference the flowers of the short-styled are generally the larger of the two. Hildebrand collected on the Siebengebirge, ten wild long-styled and ten short-styled plants. The former bore 289 flowers, of which 186 (i.e. 64 per cent) had set fruit, yielding 1.88 seed per fruit. The ten short-styled plants bore 373 flowers, of which 262 (i.e. 70 per cent) had set fruit, yielding 1.86 seed per fruit. So that the short-styled plants produced many more flowers, and these set a rather larger proportion of fruit, but the fruits themselves yielded a slightly lower average number of seeds than did the long-styled plants. The results of Hildebrand"s experiments on the fertility of the two forms are given in Table 3.19.

TABLE 3.19. Pulmonaria officinalis (from Hildebrand).

Column 1: Nature of the Union.

Column 2: Number of Flowers fertilised.

Column 3: Number of Fruits produced.

Column 4: Average Number of Seeds per Fruit.

Long-styled by pollen of short-styled. Legitimate union : 14 : 10 : 1.30.

Long-styled 14 by own-pollen, and 16 by pollen of other plant of same form.

Illegitimate union : 30 : 0 : 0.

Short-styled by pollen of long-styled. Legitimate union: 16 : 14 : 1.57.

Short-styled 11 by own-pollen, 14 by pollen of other plant of same form.

Illegitimate union : 25 : 0 : 0.

In the summer of 1864, before I had heard of Hildebrand"s experiments, I noticed some long-styled plants of this species (named for me by Dr. Hooker) growing by themselves in a garden in Surrey; and to my surprise about half the flowers had set fruit, several of which contained 2, and one contained even 3 seeds. These seeds were sown in my garden and eleven seedlings thus raised, all of which proved long-styled, in accordance with the usual rule in such cases. Two years afterwards the plants were left uncovered, no other plant of the same genus growing in my garden, and the flowers were visited by many bees. They set an abundance of seeds: for instance, I gathered from a single plant rather less than half of the seeds which it had produced, and they numbered 47. Therefore this illegitimately fertilised plant must have produced about 100 seeds; that is, thrice as many as one of the wild long-styled plants collected on the Siebengebirge by Hildebrand, and which, no doubt, had been legitimately fertilised. In the following year one of my plants was covered by a net, and even under these unfavourable conditions it produced spontaneously a few seeds.

It should be observed that as the flowers stand either almost horizontally or hang considerably downwards, pollen from the short stamens would be likely to fall on the stigma. We thus see that the English long-styled plants when illegitimately fertilised were highly fertile, whilst the German plants similarly treated by Hildebrand were completely sterile. How to account for this wide discordance in our results I know not. Hildebrand cultivated his plants in pots and kept them for a time in the house, whilst mine were grown out of doors; and he thinks that this difference of treatment may have caused the difference in our results. But this does not appear to me nearly a sufficient cause, although his plants were slightly less productive than the wild ones growing on the Siebengbirge. My plants exhibited no tendency to become equal-styled, so as to lose their proper long-styled character, as not rarely happens under cultivation with several heterostyled species of Primula; but it would appear that they had been greatly affected in function, either by long-continued cultivation or by some other cause. We shall see in a future chapter that heterostyled plants illegitimately fertilised during several successive generations sometimes become more self-fertile; and this may have been the case with my stock of the present species of Pulmonaria; but in this case we must a.s.sume that the long-styled plants were at first sufficiently fertile to yield some seed, instead of being absolutely self-sterile like the German plants.

Pulmonaria angustifolia.

(FIGURE 3.6. Pulmonaria angustifolia.

Left: Long-styled form.

Right: Short-styled form.)

Seedlings of this plant, raised from plants growing wild in the Isle of Wight, were named for me by Dr. Hooker. It is so closely allied to the last species, differing chiefly in the shape and spotting of the leaves, that the two have been considered by several eminent botanists--for instance, Bentham--as mere varieties. But, as we shall presently see, good evidence can be a.s.signed for ranking them as distinct. Owing to the doubts on this head, I tried whether the two would mutually fertilise one another. Twelve short-styled flowers of P.

angustifolia were legitimately fertilised with pollen from long-styled plants of P. officinalis (which, as we have just seen, are moderately self-fertile), but they did not produce a single fruit. Thirty-six long-styled flowers of P.

angustifolia were also illegitimately fertilised during two seasons with pollen from the long-styled P. officinalis, but all these flowers dropped off unimpregnated. Had the plants been mere varieties of the same species these illegitimate crosses would probably have yielded some seeds, judging from my success in illegitimately fertilising the long-styled flowers of P. officinalis; and the twelve legitimate crosses, instead of yielding no fruit, would almost certainly have yielded a considerable number, namely, about nine, judging from the results given in Table 3.20. Therefore P. officinalis and angustifolia appear to be good and distinct species, in conformity with other important functional differences between them, immediately to be described.

TABLE 3.20. Pulmonaria angustifolia.

Column 1: Nature of the Union.

Column 2: Number of Flowers fertilised.

Column 3: Number of Fruits produced.

Column 4: Average Number of Seeds per Fruit.

Long-styled by pollen of short-styled. Legitimate union : 18 : 9 : 2.11.

Long-styled by own-form pollen. Illegitimate union : 18 : 0 : 0.

Short-styled by pollen of long-styled. Legitimate union: 18 : 15 : 2.60.

Short-styled by own-form pollen. Illegitimate union : 12 : 7 : 1.86.

The long-styled and short-styled flowers of P. angustifolia differ from one another in structure in nearly the same manner as those of P. officinalis. But in Figure 3.6 a slight bulging of the corolla in the long-styled form, where the anthers are seated, has been overlooked. My son William, who examined a large number of wild plants in the Isle of Wight, observed that the corolla, though variable in size, was generally larger in the long-styled flowers than in the short-styled; and certainly the largest corollas of all were found on the long- styled plants, and the smallest on the short-styled. Exactly the reverse occurs, according to Hildebrand, with P. officinalis. Both the pistils and stamens of P.

angustifolia vary much in length; so that in the short-styled form the distance between the stigma and the anthers varied from 119 to 65 divisions of the micrometer, and in the long-styled from 115 to 112. From an average of seven measurements of each form the distance between these organs in the long-styled is to the same distance in the short-styled form as 100 to 69; so that the stigma in the one form does not stand on a level with the anthers in the other.

The long-styled pistil is sometimes thrice as long as that of the short-styled; but from an average of ten measurements of both, its length to that of the short-styled was as 100 to 56. The stigma varies in being more or less, though slightly, lobed. The anthers also vary much in length in both forms, but in a greater degree in the long-styled than in the short-styled-form; many in the former being from 80 to 63, and in the latter from 80 to 70 divisions of the micrometer in length. From an average of seven measurements, the short-styled anthers were to those from the long-styled as 100 to 91 in length. Lastly, the pollen-grains from the long-styled flowers varied between 13 and 11.5 divisions of the micrometer, and those from the short-styled between 15 and 13. The average diameter of 25 grains from the latter, or short-styled form, was to that of 20 grains from the long-styled as 100 to 91. We see, therefore, that the pollen-grains from the smaller anthers of the shorter stamens in the long-styled form are, as usual, of smaller size than those in the other form. But what is remarkable, a larger proportion of the grains were small, shrivelled, and worthless. This could be seen by merely comparing the contents of the anthers from several distinct plants of each form. But in one instance my son found, by counting, that out of 193 grains from a long-styled flower, 53 were bad, or 27 per cent; whilst out of 265 grains from a short-styled flower only 18 were bad, or 7 per cent. From the condition of the pollen in the long-styled form, and from the extreme variability of all the organs in both forms, we may perhaps suspect that the plant is undergoing a change, and tending to become dioecious.

My son collected in the Isle of Wight on two occasions 202 plants, of which 125 were long-styled and 77 short-styled; so that the former were the more numerous.

On the other hand, out of 18 plants raised by me from seed, only 4 were long- styled and 14 short-styled. The short-styled plants seemed to my son to produce a greater number of flowers than the long-styled; and he came to this conclusion before a similar statement had been published by Hildebrand with respect to P.

officinalis. My son gathered ten branches from ten different plants of both forms, and found the number of flowers of the two forms to be as 100 to 89, 190 being short-styled and 169 long-styled. With P. officinalis the difference, according to Hildebrand, is even greater, namely, as 100 flowers for the short- styled to 77 for the long-styled plants. Table 3.20 shows the results of my experiments.

We see in Table 3.20 that the fertility of the two legitimate unions to that of the two illegitimate together is as 100 to 35, judged by the proportion of flowers which produced fruit; and as 100 to 32, judged by the average number of seeds per fruit. But the small number of fruit yielded by the 18 long-styled flowers in the first line was probably accidental, and if so, the difference in the proportion of legitimately and illegitimately fertilised flowers which yield fruit is really greater than that represented by the ratio of 100 to 35. The 18 long-styled flowers illegitimately fertilised yielded no seeds,--not even a vestige of one. Two long-styled plants which were placed under a net produced 138 flowers, besides those which were artificially fertilised, and none of these set any fruit; nor did some plants of the same form which were protected during the next summer. Two other long-styled plants were left uncovered (all the short-styled plants having been previously covered up), and humble-bees, which had their foreheads white with pollen, incessantly visited the flowers, so that their stigmas must have received an abundance of pollen, yet these flowers did not produce a single fruit. We may therefore conclude that the long-styled plants are absolutely barren with their own-form pollen, though brought from a distinct plant. In this respect they differ greatly from the long-styled English plants of P. officinalis which were found by me to be moderately self-fertile; but they agree in their behaviour with the German plants of P. officinalis experimented on by Hildebrand.

Eighteen short-styled flowers legitimately fertilised yielded, as may be seen in Table 3.20, 15 fruits, each having on an average 2.6 seeds. Four of these fruits contained the highest possible number of seeds, namely 4, and four other fruits contained each 3 seeds. The 12 illegitimately fertilised short-styled flowers yielded 7 fruits, including on an average 1.86 seed; and one of these fruits contained the maximum number of 4 seeds. This result is very surprising in contrast with the absolute barrenness of the long-styled flowers when illegitimately fertilised; and I was thus led to attend carefully to the degree of self-fertility of the short-styled plants. A plant belonging to this form and covered by a net bore 28 flowers besides those which had been artificially fertilised, and of all these only two produced a fruit each including a single seed. This high degree of self-sterility no doubt depended merely on the stigmas not receiving any pollen, or not a sufficient quant.i.ty. For after carefully covering all the long-styled plants in my garden, several short-styled plants were left exposed to the visits of humble-bees, and their stigmas will thus have received plenty of short-styled pollen; and now about half the flowers, thus illegitimately fertilised, set fruit. I judge of this proportion partly from estimation and partly from having examined three large branches, which had borne 31 flowers, and these produced 16 fruits. Of the fruits produced 233 were collected (many being left ungathered), and these included on an average 1.82 seed. No less than 16 out of the 233 fruits included the highest possible number of seeds, namely 4, and 31 included 3 seeds. So we see how highly fertile these short-styled plants were when illegitimately fertilised with their own-form pollen by the aid of bees.

The great difference in the fertility of the long and short-styled flowers, when both are illegitimately fertilised, is a unique case, as far as I have observed with heterostyled plants. The long-styled flowers when thus fertilised are utterly barren, whilst about half of the short-styled ones produce capsules, and these include a little above two-thirds of the number of seeds yielded by them when legitimately fertilised. The sterility of the illegitimately fertilised long-styled flowers is probably increased by the deteriorated condition of their pollen; nevertheless this pollen was highly efficient when applied to the stigmas of the short-styled flowers. With several species of Primula the short- styled flowers are much more sterile than the long-styled, when both are illegitimately fertilised; and it is a tempting view, as formerly remarked, that this greater sterility of the short-styled flowers is a special adaptation to check self-fertilisation, as their stigmas are eminently liable to receive their own pollen. This view is even still more tempting in the case of the long-styled form of Linum grandiflorum. On the other hand, with Pulmonaria angustifolia, it is evident, from the corolla projecting obliquely upwards, that pollen is much more likely to fall on, or to be carried by insects down to the stigma of the short-styled than of the long-styled flowers; yet the short-styled instead of being more sterile, as a protection against self-fertilisation, are far more fertile than the long-styled, when both are illegitimately fertilised.

Pulmonaria azurea, according to Hildebrand, is not heterostyled. (3/12. "Die Geschlechter-Vertheilung bei den Pflanzen" 1867 page 37.)

[From an examination of dried flowers of Amsinckia spectabilis, sent me by Professor Asa Gray, I formerly thought that this plant, a member of the Boragineae, was heterostyled. The pistil varies to an extraordinary degree in length, being in some specimens twice as long as in others, and the point of insertion of the stamens likewise varies. But on raising many plants from seed, I soon became convinced that the whole case was one of mere variability. The first-formed flowers are apt to have stamens somewhat arrested in development, with very little pollen in their anthers; and in such flowers the stigma projects above the anthers, whilst generally it stands below and sometimes on a level with them. I could detect no difference in the size of the pollen-grain or in the structure of the stigma in the plants which differed most in the above respects; and all of them, when protected from the access of insects, yielded plenty of seeds. Again, from statements made by Vaucher, and from a hasty inspection, I thought at first that the allied Anchusa arvensis and Echium vulgare were heterostyled, but soon saw my error. From information given me, I examined dried flowers of another member of the Boragineae, Arnebia hispidissima, collected from several sites, and though the corolla, together with the included organs, differed much in length, there was no sign of heterostylism.]

Polygonum f.a.gopyrum (Polygonaceae).

(FIGURE 3.7. Polygonum f.a.gopyrum. (From H. Muller.) Upper figure, the long-styled form; lower figure, the short-styled.

Some of the anthers have dehisced, others have not.)

Hildebrand has shown that this plant, the common Buck-wheat, is heterostyled.

(3/13. "Die Geschlechter-Vertheilung" etc. 1867 page 34.) In the long-styled form (Figure 3.7), the three stigmas project considerably above the eight short stamens, and stand on a level with the anthers of the eight long stamens in the short-styled form; and so it is conversely with the stigmas and stamens of this latter form. I could perceive no difference in the structure of the stigmas in the two forms. The pollen-grains of the short-styled form are to those of the long-styled as 100 to 82 in diameter. This plant is therefore without doubt heterostyled.

I experimented only in an imperfect manner on the relative fertility of the two forms. Short-styled flowers were dragged several times over two heads of flowers on long-styled plants, protected under a net, which were thus legitimately, though not fully, fertilised. They produced 22 seeds, or 11 per flower-head.

© 2024 www.topnovel.cc