It is like a crowd of people pa.s.sing from a broad thoroughfare into a narrow street. As the valley grows narrower and narrower the great ma.s.s of snow in front cannot move down quickly, while more and more is piled up by the snowfall behind, and the crowd and crush grow denser and denser. In this way the snow is pressed together till the air that was hidden in its crystals, and which gave it its beautiful whiteness, is all pressed out, and the snow-crystals themselves are squeezed into one solid ma.s.s of pure, transparent ice.

Then we have what is called a "glacier," or river of ice, and this solid river comes creeping down till, in Greenland, it reaches the edge of the sea. There it is pushed over the brink of the land, and large pieces snap off, and we have "icebergs."

These icebergs - made, remember, of the same water which was first draw up from the tropics - float on the wide sea, and melting in its warm currents, topple over and over* (A floating iceberg must have about eight times as much ice under the water as it has above, and therefore, when the lower part melts in a warm current, the iceberg loses its balance and tilts over, so as to rearrange itself round the centre of gravity.) till they disappear and mix with the water, to be carried back again to the warm ocean from which they first started. In Switzerland the glaciers cannot reach the sea, but they move down into the valleys till they come to a warmer region, and there the end of the glacier melts, and flows away in a stream. The Rhone and many other rivers are fed by the glaciers of the Alps; and as these rivers flow into the sea, our drop of water again finds its way back to its home.

But when it joins itself in this way to its companions, from whom it was parted for a time, does it come back clear and transparent as it left them? From the iceberg it does indeed return pure and clear; for the fairy Crystallization will have no impurities, not even salt, in her ice-crystals, and so as they melt they give back nothing but pure water to the sea. Yet even icebergs bring down earth and stones frozen into the bottom of the ice, and so they feed the sea with mud.

But the drops of water in rivers are by no means as pure as when they rose up into the sky. We shall see in the next lecture how rivers carry down not only sand and mud all along their course, but even solid matter such as salt, lime, iron, and flint, dissolved in the clear water, just as sugar is dissolved, without our being able to see it. The water, too, which has sunk down into the earth, takes up much matter as it travels along. You all know that the water you drink from a spring is very different from rain-water, and you will often find a hard crust at the bottom of kettles and in boilers, which is formed of the carbonate of lime which is driven out of the clear water when it is boiled. The water has become "hard" in consequence of having picked up and dissolved the carbonate of lime on its way through the earth, just in the same way as water would become sweet if you poured it through a sugar-cask. You will also have heard of iron-springs, sulphur-springs, and salt-springs, which come out of the earth, even if you have never tasted any of them, and the water of all these springs finds its way back at last to the sea.

And now, can you understand why sea-water should taste salt and bitter? Every drop of water which flows from the earth to the sea carries something with it. Generally, there is so little of any substance in the water that we cannot taste it, and we call it pure water; but the purest of spring or river-water has always some solid matter dissolved in it, and all this goes to the sea. Now, when the sun-waves come to take the water out of the sea again, they will have nothing but the pure water itself; and so all these salts and carbonates and other solid substances are left behind, and we taste them in sea-water.

Some day, when you are at the seaside, take some extra water and set it on the hob till a great deal has simmered gently away, and the liquid is very thick. Then take a drop of this liquid, and examine it under a microscope. As it dries up gradually, you will see a number of crystals forming, some square - and these will be crystals of ordinary salt; some oblong - these will be crystals of gypsum or alabaster; and others of various shapes. Then, when you see how much matter from the land is contained in sea-water, you will no longer wonder that the sea is salt; on the contrary, you will ask, Why does it not grow salter every year?

The answer to this scarcely belongs to our history of a drop of water, but I must just suggest it to you. In the sea are numbers of soft-bodied animals, like the jelly animals which form the coral, which require hard material for their sh.e.l.ls or the solid branches on which they live, and they are greedily watching for these atoms of lime, of flint, or magnesia, and of other substances brought down into the sea. It is with lime and magnesia that the tiny chalk-builders form their beautiful sh.e.l.ls, and the coral animals their skeletons, while another cla.s.s of builders use the flint; and when these creatures die, their remains go to form fresh land at the bottom of the sea; and so, though the earth is being washed away by the rivers and springs it is being built up again, out of the same materials, in the depths of the great ocean.

And now we have reached the end of the travels of our drop of water. We have seen it drawn up by the fairy "heat," invisible into the sky; there fairy "cohesion" seized it and formed it into water-drops and the giant, "gravitation," pulled it down again to the earth. Or, if it rose to freezing regions, the fairy of "crystallization" built it up into snow-crystals, again to fall to the earth, and either to be melted back into water by heat, or to slide down the valleys by force of gravitation, till it became squeezed into ice. We have detected it, when invisible, forming a veil round our earth, and keeping off the intense heat of the sun"s rays by day, or shutting it in by night. We have seen it chilled by the blades of gra.s.s, forming sparkling dew-drops or crystals of h.o.a.r-frost, glistening in the early morning sun; and we have seen it in the dark underground, being drunk up greedily by the roots of plants. We have started with it from the tropics, and travelled over land and sea, watching it forming rivers, or flowing underground in springs, or moving onwards to the high mountains or the poles, and coming back again in glaciers and icebergs. Through all this, while it is being carried hither and thither by invisible power, we find no trace of its becoming worn out, or likely to rest from its labours. Ever onwards it goes, up and down, and round and round the world, taking many forms, and performing many wonderful feats. We have seen some of the work that it does, in refreshing the air, feeding the plants, giving us clear, sparkling water to drink, and carrying matter to the sea; but besides this, it does a wonderful work in altering all the face of our earth. This work we shall consider in the next lecture, on "The two great Sculptors - Water and Ice."

Week 13

LECTURE V. THE TWO GREAT SCULPTORS - WATER AND ICE.

In our last lecture we saw that water can exist in three forms:-- 1st, as an invisible vapour; 2nd, as liquid water; 3rd, as solid snow and ice.

To-day we are going to take the two last of these forms, water and ice, and speak of them as sculptors.

To understand why they deserve this name we must first consider what the work of a sculptor is. If you go into a statuary yard you will find there large blocks of granite, marble, and other kinds of stone, hewn roughly into different shapes; but if you pa.s.s into the studio, where the sculptor himself is at work you will find beautiful statues, more or less finished; and you will see that out of rough blocks of stone he has been able to cut images which look like living forms. You can even see by their faces whether they are intended to be sad, or thoughtful, or gay, and by their att.i.tude whether they are writhing in pain, or dancing with joy, or resting peacefully. How has all this history been worked out from the shapeless stone? It has been done by the sculptor"s chisel. A piece chipped off here, a wrinkle cut there, a smooth surface rounded off in another place, so as to give a gentle curve; all these touches gradually shape the figure and mould it out of the rough stone, first into a rude shape and afterwards, by delicate strokes, into the form of a living being.

Now, just in the same way as the wrinkles and curves of a statue are cut by the sculptor"s chisel, so the hills and valleys, the steep slopes and gentle curves on the face of our earth, giving it all its beauty, and the varied landscapes we love so well, have been cut out by water and ice pa.s.sing over them. It is true that some of the greater wrinkles of the earth, the lofty mountains, and the high ma.s.ses of land which rise above the sea , have been caused by earthquakes and shrinking of the earth. We shall not speak of these to-day, but put them aside as belonging to the rough work of the statuary yard. But when once these large ma.s.ses are put ready for water to work upon, then all the rest of the rugged wrinkles and gentle slopes which make the country so beautiful are due to water and ice, and for this reason I have called them "sculptors."

Go for a walk in the country, or notice the landscape as you travel on a railway journey. You pa.s.s by hills and through valleys, through narrow steep gorges cut in hard rock, or through wild ravines up the sides of which you can hardly scramble. Then you come to gra.s.sy slopes and to smooth plains across which you can look for miles without seeing a hill; or, when you arrive at the seash.o.r.e, you clamber into caves and grottos, and along dark narrow pa.s.sages leading from one bay to another. All these - hills, valleys, gorges, ravines, slopes, plains, caves, grottos, and rocky sh.o.r.es - have been cut out by the water. Day by day and year by year, while everything seems to us to remain the same, this industrious sculptor is chipping away, a few grains here, a corner there, a large ma.s.s in another place, till he gives to the country its own peculiar scenery, just as the human sculptor gives expression to his statue.

Our work to-day will consist in trying to form some idea of the way in which water thus carves out the surface of the earth, and we will begin by seeing how much can be done by our old friends the rain-drops before they become running streams.

Everyone must have noticed that whenever rain falls on soft ground it makes small round holes in which it collects, and then sinks into the ground, forcing its way between the grains of earth. But you would hardly think that the beautiful pillars in Fig. 24 have been made entirely in this way by rain beating upon and soaking into the ground.

Where these pillars stand there was once a solid ma.s.s of clay and stones, into which the rain-drops crept, loosening the earthly particles; and then when the sun dried the earth again cracks were formed, so that the next shower loosened it still more, and carried some of the mud down into the valley below. But here and there large stones were buried in the clay, and where this happened the rain could not penetrate, and the stones became the tops of tall pillars of clay, washed into shape by the rain beating on its sides, but escaping the general destruction of the rest of the mud. In this way the whole valley has been carved out into fine pillars, some still having capping-stones, while others have lost them, and these last will soon be washed away. We have no such valleys of earth-pillars here in England, but you may sometimes see tiny pillars under bridges where the drippings have washed away the earth between the pebbles, and such small examples which you can observe for yourselves are quite as instructive as more important ones.

Another way in which rain changes the surface of the earth is by sinking down through loose soil from the top of a cliff to a depth of many feet till it comes to solid rock, and then lying spread over a wide apace. Here it makes a kind of watery mud, which is a very unsafe foundation for the hill of earth above it, and so after a time the whole ma.s.s slips down and makes a fresh piece of land at the foot of the cliff. If you have ever been at the Isle of Wight you will have seen an undulating strip of ground, called the Undercliff, at Ventnor and other places, stretching all along the sea below the high cliffs. This land was once at the top of the cliff, and came down by succession of landslips such as we have been describing. A very great landslip of this kind happened in the memory of living people, at Lyme Regis, in Dorsetshire, in the year 1839.

You will easily see how in forming earth-pillars and causing landslips rain changes the face of the country, but these are only rare effects of water. It is when the rain collects in brooks and forms rivers that it is most busy in sculpturing the land. Look out some day into the road or the garden where the ground slopes a little, and watch what happens during a shower of rain. First the rain-drops run together in every little hollow of the ground, then the water begins to flow along any ruts or channels it can find, lying here and there in pools, but always making its way gradually down the slope.

Meanwhile from other parts of the ground little rills are coming, and these all meet in some larger ruts where the ground is lowest, making one great stream, which at last empties itself into the gutter or an area, or finds its way down some grating.

Now just this, which we can watch whenever a heavy shower of rain comes down on the road, happens also all over the world. Up in the mountains, where there is always a great deal of rain, little rills gather and fall over the mountain sides, meeting in some stream below. Then, as this stream flows on, it is fed by many runnels of water, which come from all parts of the country, trickling along ruts, and flowing in small brooks and rivulets down the gentle slope of the land till they reach the big stream, which at last is important enough to be called a river.

Sometimes this river comes to a large hollow in the land and there the water gathers and forms a lake; but still at the lower end of this lake out it comes again, forming a new river, and growing and growing by receiving fresh streams until at last it reaches the sea.

The River Thames, which you all know, and whose course you will find clearly described in Mr. Huxley"s "Physiography," drains in this way no less than one-seventh of the whole of England. All the rain which falls in Berkshire, Oxfordshire, Middles.e.x, Hertfordshire, Surrey, the north of Wiltshire and north-west of Kent, the south of Buckinghamshire and of Gloucestershire, finds its way into the Thames; making an area of 6160 square miles over which every rivulet and brook trickle down to the one great river, which bears them to the ocean. And so with every other area of land in the world there is some one channel towards which the ground on all sides slopes gently down, and into this channel all the water will run, on its way to the sea.

But what has this to do with sculpture or cutting out of valleys?

If you will only take a gla.s.s of water out of any river, and let it stand for some hours, you will soon answer this question for yourself. For you will find that even from river water which looks quite clear, a thin layer of mud will fall to the bottom of the gla.s.s, and if you take the water when the river is swollen and muddy you will get quite a thick deposit. This shows that the brooks, the streams, and the rivers wash away the land as they flow over it and carry it from the mountains down to the valleys, and from the valleys away out into the sea.

But besides earthly matter, which we can see, there is much matter dissolved in the water of rivers (as we mentioned in the last lecture), and this we cannot see.

If you use water which comes out of a chalk country you will find that after a time the kettle in which you have been in the habit of boiling this water has a hard crust on its bottom and sides, and this crust is made of chalk or carbonate of lime, which the water took out of the rocks when it was pa.s.sing through them. Professor Bischoff has calculated that the river Rhine carries past Bonn every year enough carbonate of lime dissolved in its water to make 332,000 million oyster-sh.e.l.ls, and that if all these sh.e.l.ls were built into a cube it would measure 560 feet.

Week 14

Imagine to yourselves the whole of St. Paul"s churchyard filled with oyster-sh.e.l.ls, built up in a large square till they reached half as high again as the top of the cathedral, then you will have some idea of the amount of chalk carried invisibly past Bonn in the water of the Rhine every year.

Since all this matter, whether brought down as mud or dissolved, comes from one part of the land to be carried elsewhere or out to sea, it is clear that some gaps and hollows must be left in the places from which it is taken. Let us see how these gaps are made. Have you ever clambered up the mountainside, or even up one of those small ravines in the hillside, which have generally a little stream trickling through them? If so, you must have noticed the number of pebbles, large and small, lying in patches here and there in the stream, and many pieces of broken rock, which are often scattered along the sides of the ravine; and how, as you climb, the path grows steeper, and the rocks become rugged and stick out in strange shapes.

The history of this ravine will tell us a great deal about the carving of water. Once it was nothing more than a little furrow in the hillside down which the rain found its way in a thin thread-like stream. But by and by, as the stream carried down some of the earth, and the furrow grew deeper and wider, the sides began to crumble when the sun dried up the rain which had soaked in. Then in winter, when the sides of the hill were moist with the autumn rains, frost came and turned the water to ice, and so made the cracks still larger, and the swollen steam rushing down, caught the loose pieces of rock and washed them down into its bed.

Here they were rolled over and over, and grated against each other, and were ground away till they became rounded pebbles, such as lie in the foreground of the picture (Fig. 25); while the grit which was rubbed off them was carried farther down by the stream.

And so in time this became a little valley, and as the stream cut it deeper and deeper, there was room to clamber along the sides of it, and ferns and mosses began to cover the naked stone, and small trees rooted themselves along the banks, and this beautiful little nook sprang up on the hill-side entirely by the sculpturing of water.

Shall you not feel a fresh interest in all the little valleys, ravines, and gorges you meet with in the country, if you can picture them being formed in this way year by year? There are many curious differences in them which you can study for yourselves. Some will be smooth, broad valleys and here the rocks have been soft and easily worn, and water trickling down the sides of the first valley has cut other channels so as to make smaller valleys running across it. In other places there will be narrow ravines, and here the rocks have been hard, so that they did not wear away gradually, but broke off and fell in blocks, leaving high cliffs on each side. In some places you will come to a beautiful waterfall, where the water has tumbled over a steep cliff, and then eaten its way back, just like a saw cutting through a piece of wood.

There are two things in particular to notice in a waterfall like this. First, how the water and spray dash against the bottom of the cliff down which it falls, and grind the small pebbles against the rock. In this way the bottom of the cliff is undermined, and so great pieces tumble down from time to time, and keep the fall upright instead of its being sloped away at the top, and becoming a mere steam. Secondly, you may often see curious cup-shaped holes, called "pot-holes," in the rocks on the sides of a waterfall, and these also are concerned in its formation. In these holes you will generally find two or three small pebbles, and you have here a beautiful example of how water uses stones to grind away the face of the earth. These holes are made entirely by the falling water eddying round and round in a small hollow of the rock, and grinding the pebbles which it has brought down, against the bottom and sides of this hollow, just as you grind round a pestle in a mortar. By degrees the hole grows deeper and deeper and though the first pebbles are probably ground down to powder, others fall in, and so in time there is a great hole perforated right through, helping to make the rock break and fall away.

In this and other ways the water works its way back in a surprising manner. The Isle of Wight gives us some good instances of this; Alum Bay Chine and the celebrated Blackgang Chine have been entirely cut out by waterfalls. But the best know and most remarkable example is the Niagara Falls, in America. Here, the River Niagara first wanders through a flat country, and then reaches the great Lake Erie in a hollow of the plain. After that, it flows gently down for about fifteen miles, and then the slope becomes greater and it rushes on to the Falls of Niagara. These falls are not nearly so high as many people imagine, being only 165 feet, or about half the height of St.

Paul"s Cathedral, but they are 2700 feet or nearly half-a-mile wide, and no less than 670,000 tons of water fall over them every minute, making magnificent clouds of spray.

Sir Charles Lyell, when he was at Niagara, came to the conclusion that, taking one year with another, these falls eat back the cliff at the rate of about one foot a year, as you can easily imagine they would do, when you think with what force the water must dash against the bottom of the falls. In this way a deep cleft has been cut right back from Queenstown for a distance of seven miles, to the place where the falls are now. This helps us a little to understand how very slowly and gradually water cuts its way; for if a foot a year is about the average of the waste of the rock, it will have taken more than thirty-five thousand years for that channel of seven miles to be made.

But even this chasm cut by the falls of Niagara is nothing compared with the canyons of Colarado. Canyon is a Spanish word for a rocky gorge, and these gorges are indeed so grand, that if we had not seen in other places what water can do, we should never have been able to believe that it could have cut out these gigantic chasms. For more than three hundred miles the River Colorado, coming down from the Rocky Mountains, has eaten its way through a country made of granite and hard beds of limestone and sandstone, and it has cut down straight through these rocks, leaving walls from half-a-mile to a mile high, standing straight up from it. The cliffs of the Great Canyon, as it is called, stretch up for more than a mile above the river which flows in the gorge below! Fancy yourselves for a moment in a boat on this river, as shown in Figure 27, and looking up at these gigantic walls of rock towering above you. Even half-way up them, a man, if he could get there, would be so small you could not see him without a telescope; while the opening at the top between the two walls would seem so narrow at such an immense distance that the sky above would have the appearance of nothing more than a narrow streak of blue. Yet these huge chasms have not been made by any violent breaking apart of the rocks or convulsion of an earthquake. No, they have been gradually, silently, and steadily cut through by the river which now glides quietly in the wider chasms, or rushes rapidly through the narrow gorges at their feet.

"No description," says Lieutenant Ives, one of the first explorers of this river, "can convey the idea of the varied and majestic grandeur of this peerless waterway. Wherever the river turns, the entire panorama changes. Stately facades, august cathedrals, amphitheatres, rotundas, castellated walls, and rows of time-stained ruins, surmounted by every form of tower, minaret, dome and spire, have been moulded from the cyclopean ma.s.ses of rock that form the mighty defile." Who will say, after this, that water is not the grandest of all sculptors, as it cuts through hundreds of miles of rock, forming such magnificent granite groups, not only unsurpa.s.sed but unequalled by any of the works of man?

But we must not look upon water only as a cutting instrument, for it does more than merely carve out land in one place, it also carries it away and lays it down elsewhere; and in this it is more like a modeller in clay, who smooths off the material from one part of his figure to put it upon another.

Running water is not only always carrying away mud, but at the same time laying it down here and there wherever it flows. When a torrent brings down stones and gravel from the mountains, it will depend on the size and weight of the pieces how long they will be in falling through the water. If you take a handful of gravel and throw it into a gla.s.s full of water, you will notice that the stones in it will fall to the bottom at once, the grit and coa.r.s.e sand will take longer in sinking, and lastly, the fine sand will be an hour or two in settling down, so that the water becomes clear. Now, suppose that this gravel were sinking in the water of a river. The stones would be buoyed up as long as the river was very full and flowed very quickly, but they would drop through sooner than the coa.r.s.e sand. The coa.r.s.e sand in its turn would begin to sink as the river flowed more slowly, and would reach the bottom while the fine sand was still borne on. Lastly, the fine sand would sink through very, very slowly, and only settle in comparatively still water.

From this it will happen that stones will generally lie near to the bottom of torrents at the foot of the banks from which they fall, while the gravel will be carried on by the stream after it leaves the mountains. This too, however, will be laid down when the river comes into a more level country and runs more slowly.

Or it may be left together with the finer mud in a lake, as in the lake of Geneva, into which the Rhone flows laden with mud and comes out at the other end clear and pure. But if no lake lies in the way the finer earth will still travel on, and the river will take up more and more as it flows, till at last it will leave this too on the plains across which it moves sluggishly along, or will deposit it at its mouth when it joins the sea.

Week 15

You all know the history of the Nile; how, when the rains fall very heavily in March and April in the mountains of Abyssinia, the river comes rushing down and brings with it a load of mud which it spreads out over the Nile valley in Egypt. This annual layer of mud is so thin that it takes a thousand years for it to become 2 or 3 feet thick; but besides that which falls in the valley a great deal is taken to the mouth of the river and there forms new land, making what is called the "Delta" of the Nile.

Alexandria, Rosetta, and Damietta, are towns which are all built on land made of Nile mud which was carried down ages and ages ago, and which has now become firm and hard like the rest of the country. You will easily remember other deltas mentioned in books, and all these are made of the mud carried down from the land to the sea. The delta of the Ganges and Brahmapootra in India, is actually as large as the whole of England and Wales, (58,311 square miles.) and the River Mississippi in America drains such a large tract of country that its delta grows, Mr. Geikie tells us, at the rate of 86 yards in year.

All this new land laid down in Egypt, in India, in America, and in other places, is the work of water. Even on the Thames you may see mud-banks, as at Gravesend, which are made of earth brought from the interior of England. But at the mouth of the Thames the sea washes up very strongly every tide, and so it carries most of the mud away and prevents a delta growing up there. If you will look about when you are at the seaside, and notice wherever a stream flows down into the sea, you may even see little miniature deltas being formed there, though the sea generally washes them away again in a few hours, unless the place is well sheltered.

This, then, is what becomes of the earth carried down by rivers.

Either on plains, or in lakes, or in the sea, it falls down to form new land. But what becomes of the dissolved chalk and other substances? We have seen that a great deal of it is used by river and sea animals to build their sh.e.l.ls and skeletons, and some of it is left on the surface of the ground by springs when the water evaporates. It is this carbonate of lime which forms a hard crust over anything upon which it may happen to be deposited, and then these things are called "petrified."

© 2024 www.topnovel.cc