[Ill.u.s.tration: ALBATROSS: A CHARACTERISTIC PELAGIC BIRD OF THE SOUTHERN SEA
It may have a spread of wing of over 11 feet from tip to tip. It is famous for its extraordinary power of "sailing" round the ship without any apparent strokes of its wings.]
VI. THE AIR
There are no animals thoroughly aerial, but many insects spend much of their adult life in the free air, and the swift hardly pauses in its flight from dawn to dusk of the long summer day, alighting only for brief moments at the nest to deliver insects to the young. All the active life of bats certainly deserves to be called aerial.
The air was the last haunt of life to be conquered, and it is interesting to inquire what the conquest implied. (1) It meant transcending the radical difficulty of terrestrial life which confines the creatures of the dry land to moving on one plane, the surface of the earth. But the power of flight brought its possessors back to the universal freedom of movement which water animals enjoy. When we watch a sparrow rise into the air just as the cat has completed her stealthy stalking, we see that flight implies an enormous increase of safety. (2) The power of flight also opened up new possibilities of following the prey, of exploring new territories, of prospecting for water. (3) Of great importance too was the practicability of placing the eggs and the young, perhaps in a nest, in some place inaccessible to most enemies.
When one thinks of it, the rooks" nests swaying on the tree-tops express the climax of a brilliant experiment. (4) The crowning advantage was the possibility of migrating, of conquering time (by circ.u.mventing the arid summer and the severe winter) and of conquering s.p.a.ce (by pa.s.sing quickly from one country to another and sometimes almost girdling the globe). There are not many acquisitions that have meant more to their possessors than the power of flight. It was a key opening the doors of a new freedom.
The problem of flight, as has been said in a previous chapter, has been solved four times, and the solution has been different in each case. The four solutions are those offered by insects, extinct Pterodactyls, birds, and bats. Moreover, as has been pointed out, there have been numerous attempts at flight which remain glorious failures, notably the flying fishes, which take a great leap and hold their pectoral fins taut; the Flying Tree-Toad, whose webbed fingers and toes form a parachute; the Flying Lizard (_Draco volans_), which has its skin pushed out on five or six greatly elongated mobile ribs; and various "flying"
mammals, e.g. Flying Phalangers and Flying Squirrels, which take great swooping leaps from tree to tree.
The wings of an insect are hollow flattened sacs which grow out from the upper parts of the sides of the second and third rings of the region called the thorax. They are worked by powerful muscles, and are supported, like a fan, by ribs of chitin, which may be accompanied by air-tubes, blood-channels, and nerves. The insect"s body is lightly built and very perfectly aerated, and the principle of the insect"s flight is the extremely rapid striking of the air by means of the lightly built elastic wings. Many an insect has over two hundred strokes of its wings in one _second_. Hence, in many cases, the familiar hum, comparable on a small scale to that produced by the rapidly revolving blades of an aeroplane"s propeller. For a short distance a bee can outfly a pigeon, but few insects can fly far, and they are easily blown away or blown back by the wind. Dragon-flies and bees may be cited as examples of insects that often fly for two or three miles. But this is exceptional, and the usual shortness of insect flight is an important fact for man since it limits the range of insects like house-flies and mosquitoes which are vehicles of typhoid fever and malaria respectively.
The most primitive insects (spring-tails and bristle-tails) show no trace of wings, while fleas and lice have become secondarily wingless.
It is interesting to notice that some insects only fly once in their lifetime, namely, in connection with mating. The evolution of the insect"s wing remains quite obscure, but it is probable that insects could run, leap, and parachute before they could actually fly.
The extinct Flying Dragons or Pterodactyls had their golden age in the Cretaceous era, after which they disappeared, leaving no descendants. A fold of skin was spread out from the sides of the body by the enormously elongated outermost finger (usually regarded as corresponding to our little finger); it was continued to the hind-legs and thence to the tail.
It is unlikely that the Pterodactyls could fly far, for they have at most a weak keel on their breast-bone; on the other hand, some of them show a marked fusion of dorsal vertebrae, which, as in flying birds, must have served as a firm fulcrum for the stroke of the wings. The quaint creatures varied from the size of a sparrow up to a magnificent spread of 15-20 feet from tip to tip of the wings. They were the largest of all flying creatures.
The bird"s solution of the problem of flight, which will be discussed separately, is centred in the feather, which forms a coherent vane for striking the air. In Pterodactyl and bat the wing is a web-wing or patagium, and a small web is to be seen on the front side of the bird"s wing. But the bird"s patagium is unimportant, and the bird"s wing is on an evolutionary tack of its own--a fore-limb transformed for bearing the feathers of flight. Feathers are in a general way comparable to the scales of reptiles, but only in a general way, and no transition stage is known between the two. Birds evolved from a bipedal Dinosaur stock, as has been noticed already, and it is highly probable that they began their ascent by taking running leaps along the ground, flapping their scaly fore-limbs, and balancing themselves in kangaroo-like fashion with an extended tail. A second chapter was probably an arboreal apprenticeship, during which they made a fine art of parachuting--a persistence of which is to be seen in the pigeon "gliding" from the dovecot to the ground. It is in birds that the mastery of the air reaches its climax, and the mysterious "sailing" of the albatross and the vulture is surely the most remarkable locomotor triumph that has ever been achieved. Without any apparent stroke of the wings, the bird sails for half an hour at a time with the wind and against the wind, around the ship and in majestic spirals in the sky, probably taking advantage of currents of air of different velocities, and continually changing energy of position into energy of motion as it sinks, and energy of motion into energy of position as it rises. It is interesting to know that some dragon-flies are also able to "sail."
The web-wing of bats involves much more than the fore-arm. The double fold of skin begins on the side of the neck, pa.s.ses along the front of the arm, skips the thumb, and is continued over the elongated palm-bones and fingers to the sides of the body again, and to the hind-legs, and to the tail if there is a tail. It is interesting to find that the bones of the bat"s skeleton tend to be lightly built as in birds, that the breast-bone has likewise a keel for the better insertion of the pectoral muscles, and that there is a solidifying of the vertebrae of the back, affording as in birds a firm basis for the wing action. Such similar adaptations to similar needs, occurring in animals not nearly related to one another, are called "convergences," and form a very interesting study. In addition to adaptations which the bat shares with the flying bird, it has many of its own. There are so many nerve-endings on the wing, and often also on special skin-leaves about the ears and nose, that the bat flying in the dusk does not knock against branches or other obstacles. Some say that it is helped by the echoes of its high-pitched voice, but there is no doubt as to its exquisite tactility. That it usually produces only a single young one at a time is a clear adaptation to flight, and similarly the sharp, mountain-top-like cusps on the back teeth are adapted in insectivorous bats for crunching insects.
Whether we think of the triumphant flight of birds, reaching a climax in migration, or of the marvel that a creature of the earth--as a mammal essentially is--should evolve such a mastery of the air as we see in bats, or even of the repeated but splendid failures which parachuting animals ill.u.s.trate, we gain an impression of the insurgence of living creatures in their characteristic endeavour after fuller well-being.
We have said enough to show how well adapted many animals are to meet the particular difficulties of the haunt which they tenant. But difficulties and limitations are ever arising afresh, and so one fitness follows on another. It is natural, therefore, to pa.s.s to the frequent occurrence of protective resemblance, camouflage, and mimicry--the subject of the next article.
BIBLIOGRAPHY
ELMHIRST, R., _Animals of the Sh.o.r.e_.
FLATTELY AND WALTON, _The Biology of the Sh.o.r.e_ (1921).
FURNEAUX, _Life of Ponds and Streams_.
HICKSON, S. J., _Story of Life in the Seas_ and _Fauna of the Deep Sea_.
JOHNSTONE, J., _Life in the Sea_ (Cambridge Manual of Science).
MIALL, L. C., _Aquatic Insects_.
MURRAY, SIR JOHN, _The Ocean_ (Home University Library).
MURRAY, SIR JOHN AND HJORT, DR. J., _The Depths of the Ocean_.
NEWBIGIN, M. I., _Life by the Sea Sh.o.r.e_.
PYCRAFT, W. P., _History of Birds_.
SCHARFF, R. F., _History of the European Fauna_ (Contemp. Sci. Series).
THOMSON, J. ARTHUR, _The Wonder of Life_ (1914) and _The Haunts of Life_ (1921).
IV
THE STRUGGLE FOR EXISTENCE
ANIMAL AND BIRD MIMICRY AND DISGUISE
-- 1
For every animal one discovers when observing carefully, there must be ten unseen. This is partly because many animals burrow in the ground or get in underneath things and into dark corners, being what is called cryptozoic or elusive. But it is partly because many animals put on disguise or have in some way acquired a garment of invisibility. This is very common among animals, and it occurs in many forms and degrees. The reason why it is so common is because the struggle for existence is often very keen, and the reasons why the struggle for existence is keen are four. First, there is the tendency to over-population in many animals, especially those of low degree. Second, there is the fact that the scheme of nature involves nutritive chains or successive incarnations, one animal depending upon another for food, and all in the long run on plants; thirdly, every vigorous animal is a bit of a hustler, given to insurgence and sticking out his elbows. There is a fourth great reason for the struggle for existence, namely, the frequent changefulness of the physical environment, which forces animals to answer back or die; but the first three reasons have most to do with the very common a.s.sumption of some sort of disguise. Even when an animal is in no sense a weakling, it may be very advantageous for it to be inconspicuous when it is resting or when it is taking care of its young.
Our problem is the evolution of elusiveness, so far at least as that depends on likeness to surroundings, on protective resemblance to other objects, and in its highest reaches on true mimicry.
Colour Permanently Like That of Surroundings
Many animals living on sandy places have a light-brown colour, as is seen in some lizards and snakes. The green lizard is like the gra.s.s and the green tree-snake is inconspicuous among the branches. The spotted leopard is suited to the interrupted light of the forest, and it is sometimes hard to tell where the jungle ends and the striped tiger begins. There is no better case than the hare or the partridge sitting a few yards off on the ploughed field. Even a donkey grazing in the dusk is much more readily heard than seen.
The experiment has been made of tethering the green variety of Praying Mantis on green herbage, fastening them with silk threads. They escape the notice of birds. The same is true when the brown variety is tethered on withered herbage. But if the green ones are put on brown plants, or the brown ones on green plants, the birds pick them off. Similarly, out of 300 chickens in a field, 240 white or black and therefore conspicuous, 60 spotted and inconspicuous, 24 were soon picked off by crows, but only one of these was spotted. This was not the proportion that there should have been if the mortality had been fortuitous. There is no doubt that it often pays an animal to be like its habitual surroundings, like a little piece of scenery if the animal is not moving. It is safe to say that in process of time wide departures from the safest coloration will be wiped out in the course of Nature"s ceaseless sifting.
But we must not be credulous, and there are three cautions to be borne in mind. (1) An animal may be very like its surroundings without there being any protection implied. The arrow-worms in the sea are as clear as gla.s.s, and so are many open-sea animals. But this is because their tissues are so watery, with a specific gravity near that of the salt water. And the invisibility does not save them, always or often, from being swallowed by larger animals that gather the harvest of the sea.
(2) Among the cleverer animals it looks as if the creature sometimes sought out a spot where it was most inconspicuous. A spider may place itself in the middle of a little patch of lichen, where its self-effacement is complete. Perhaps it is more comfortable as well as safer to rest in surroundings the general colour of which is like that of the animal"s body. (3) The fishes that live among the coral-reefs are startling in their brilliant coloration, and there are many different patterns. To explain this it has been suggested that these fishes are so safe among the mazy pa.s.sages and endless nooks of the reefs, that they can well afford to wear any colour that suits their const.i.tution. In some cases this may be true, but naturalists who have put on a diving suit and walked about among the coral have told us that each kind of fish is particularly suited to some particular place, and that some are suited for midday work and others for evening work. Sometimes there is a sort of Box and c.o.x arrangement by which two different fishes utilise the same corner at different times.
[Ill.u.s.tration: THE PRAYING MANTIS (_Mantis Religiosa_)
A very voracious insect with a quiet, un.o.btrusive appearance. It holds its formidable forelegs as if in the att.i.tude of prayer; its movements are very slow and stealthy; and there is a suggestion of a leaf in the forewing. But there is no reason to credit the creature with conscious guile!]
[Ill.u.s.tration: PROTECTIVE COLORATION: A WINTER SCENE IN NORTH SCANDINAVIA
Showing Variable Hare, Willow Grouse, and Arctic Fox, all white in winter and inconspicuous against the snow. But the white dress is also the dress that is physiologically best, for it loses least of the animal heat.]
[Ill.u.s.tration: THE VARIABLE MONITOR (_Vara.n.u.s_)
The monitors are the largest of existing lizards, the Australian species represented in the photograph attaining a length of four feet. It has a brown colour with yellow spots, and in spite of its size it is not conspicuous against certain backgrounds, such as the bark of a tree.]
-- 2
Gradual Change of Colour
The common sh.o.r.e-crab shows many different colours and mottlings, especially when it is young. It may be green or grey, red or brown, and so forth, and it is often in admirable adjustment to the colour of the rock-pool where it is living. Experiments, which require extension, have shown that when the crab has moulted, which it has to do very often when it is young, the colour of the new sh.e.l.l tends to harmonise with the general colour of the rocks and seaweed. How this is brought about, we do not know. The colour does not seem to change till the next moult, and not then unless there is some reason for it. A full-grown sh.o.r.e-crab is well able to look after itself, and it is of interest to notice, therefore, that the variety of coloration is mainly among the small individuals, who have, of course, a much less secure position. It is possible, moreover, that the resemblance to the surroundings admits of more successful hunting, enabling the small crab to take its victim unawares.
Professor Poulton"s experiments with the caterpillars of the small tortoise-sh.e.l.l b.u.t.terfly showed that in black surroundings the pupae tend to be darker, in white surroundings lighter, in gilded boxes golden; and the same is true in other cases. It appears that the surrounding colour affects the caterpillars through the skin during a sensitive period--the twenty hours immediately preceding the last twelve hours of the larval state. The result will tend to make the quiescent pupae less conspicuous during the critical time of metamorphosis. The physiology of this sympathetic colouring remains obscure.
Seasonal Change of Colouring
The ptarmigan moults three times in the year. Its summer plumage is rather grouselike above, with a good deal of rufous brown; the back becomes much more grey in autumn; almost all the feathers of the winter plumage are white. That is to say, they develop without any pigment and with numerous gas-bubbles in their cells. Now there can be no doubt that this white winter plumage makes the ptarmigan very inconspicuous amidst the snow. Sometimes one comes within a few feet of the crouching bird without seeing it, and this garment of invisibility may save it from the hungry eyes of golden eagles.