What speed shall I use?
What feed shall I use?
even though he may repeat the same piece of work many times.
To return to the case of the machinist who had been working for ten to twelve years in machining the same pieces over and over again, there was but a remote chance in any of the various kinds of work which this man did that he should hit upon the one best method of doing each piece of work out of the hundreds of possible methods which lay before him. In considering this typical case, it must also be remembered that the metal-cutting machines throughout our machine-shops have practically all been speeded by their makers by guesswork, and without the knowledge obtained through a study of the art of cutting metals. In the machine-shops systematized by us we have found that there is not one machine in a hundred which is speeded by its makers at anywhere near the correct cutting speed. So that, in order to compete with the science of cutting metals, the machinist, before he could use proper speeds, would first have to put new pulleys on the countershaft of his machine, and also make in most cases changes in the shapes and treatment of his tools, etc. Many of these changes are matters entirely beyond his control, even if he knows what ought to be done.
If the reason is clear to the reader why the rule-of-thumb knowledge obtained by the machinist who is engaged on repeat work cannot possibly compete with the true science of cutting metals, it should be even more apparent why the high-cla.s.s mechanic, who is called upon to do a great variety of work from day to day, is even less able to compete with this science. The high-cla.s.s mechanic who does a different kind of work each day, in order to do each job in the quickest time, would need, in addition to a thorough knowledge of the art of cutting metals, a vast knowledge and experience in the quickest way of doing each kind of hand work. And the reader, by calling to mind the gain which was made by Mr.
Gilbreth through his motion and time study in laying bricks, will appreciate the great possibilities for quicker methods of doing all kinds of hand work which lie before every tradesman after he has the help which comes from a scientific motion and time study of his work.
For nearly thirty years past, time-study men connected with the management of machine-shops have been devoting their whole time to a scientific motion study, followed by accurate time study, with a stop-watch, of all of the elements connected with the machinist"s work.
When, therefore, the teachers, who form one section of the management, and who are cooperating with the working men, are in possession both of the science of cutting metals and of the equally elaborate motion-study and time-study science connected with this work, it is not difficult to appreciate why even the highest cla.s.s mechanic is unable to do his best work without constant daily a.s.sistance from his teachers. And if this fact has been made clear to the reader, one of the important objects in writing this paper will have been realized.
It is hoped that the ill.u.s.trations which have been given make it apparent why scientific management must inevitably in all cases produce overwhelmingly greater results, both for the company and its employees, than can be obtained with the management of "initiative and incentive."
And it should also be clear that these results have been attained, not through a marked superiority in the mechanism of one type of management over the mechanism of another, but rather through the subst.i.tution of one set of underlying principles for a totally different set of principles, by the subst.i.tution of one philosophy for another philosophy in industrial management.
To repeat them throughout all of these ill.u.s.trations, it will be seen that the useful results have hinged mainly upon (1) the subst.i.tution of a science for the individual judgment of the workman; (2) the scientific selection and development of the workman, after each man has been studied, taught, and trained, and one may say experimented with, instead of allowing the workmen to select themselves and develop in a haphazard way; and (3) the intimate cooperation of the management with the workmen, so that they together do the work in accordance with the scientific laws which have been developed, instead of leaving the solution of each problem in the hands of the individual workman. In applying these new principles, in place of the old individual effort of each workman, both sides share almost equally in the daily performance of each task, the management doing that part of the work for which they are best fitted, and the workmen the balance.
It is for the ill.u.s.tration of this philosophy that this paper has been written, but some of the elements involved in its general principles should be further discussed.
The development of a science sounds like a formidable undertaking, and in fact anything like a thorough study of a science such as that of cutting metals necessarily involves many years of work. The science of cutting metals, however, represents in its complication, and in the time required to develop it, almost an extreme case in the mechanic arts. Yet even in this very intricate science, within a few months after starting, enough knowledge had been obtained to much more than pay for the work of experimenting. This holds true in the case of practically all scientific development in the mechanic arts. The first laws developed for cutting metals were crude, and contained only a partial knowledge of the truth, yet this imperfect knowledge was vastly better than the utter lack of exact information or the very imperfect rule of thumb which existed before, and it enabled the workmen, with the help of the management, to do far quicker and better work.
For example, a very short time was needed to discover one or two types of tools which, though imperfect as compared with the shapes developed years afterward, were superior to all other shapes and kinds in common use. These tools were adopted as standard and made possible an immediate increase in the speed of every machinist who used them. These types were superseded in a comparatively short time by still other tools which remained standard until they in their turn made way for later improvements.*
[*Footnote: Time and again the experimenter in the mechanic arts will find himself face to face with the problem as to whether he had better make immediate practical use of the knowledge which he has attained, or wait until some positive finality in his conclusions has been reached.
He recognizes clearly the fact that he has already made some definite progress, but sees the possibility (even the probability) of still further improvement. Each particular case must of course be independently considered, but the general conclusion we have reached is that in most instances it is wise to put one"s conclusions as soon as possible to the rigid test of practical use. The one indispensable condition for such a test, however, is that the experimenter shall have full opportunity, coupled with sufficient authority, to insure a thorough and impartial trial. And this, owing to the almost universal prejudice in favor of the old, and to the suspicion of the new, is difficult to get.]
The science which exists in most of the mechanic arts is, however, far simpler than the science of cutting metals. In almost all cases, in fact, the laws or rules which are developed are so simple that the average man would hardly dignify them with the name of a science. In most trades, the science is developed through a comparatively simple a.n.a.lysis and time study of the movements required by the workmen to do some small part of his work, and this study is usually made by a man equipped merely with a stop-watch and a properly ruled notebook.
Hundreds of these "time-study men" are now engaged in developing elementary scientific knowledge where before existed only rule of thumb.
Even the motion study of Mr. Gilbreth in bricklaying (described on pages 77 to 84) involves a much more elaborate investigation than that which occurs in most cases. The general steps to be taken in developing a simple law of this cla.s.s are as follows:
First. Find, say, 10 or 15 different men (preferably in as many separate establishments and different parts of the country) who are especially skilful in doing the particular work to be a.n.a.lyzed.
Second. Study the exact series of elementary operations or motions which each of these men uses in doing the work which is being investigated, as well as the implements each man uses.
Third. Study with a stop-watch the time required to make each of these elementary movements and then select the quickest way of doing each element of the work.
Fourth. Eliminate all false movements, slow movements, and useless movements.
Fifth. After doing away with all unnecessary movements, collect into one series the quickest and best movements as well as the best implements.
This one new method, involving that series of motions which can be made quickest and best, is then subst.i.tuted in place of the ten or fifteen inferior series which were formerly in use. This best method becomes standard, and remains standard, to be taught first to the teachers (or functional foremen) and by them to every workman in the establishment until it is superseded by a quicker and better series of movements. In this simple way one element after another of the science is developed.
In the same way each type of implement used in a trade is studied. Under the philosophy of the management of "initiative and incentive" each work-man is called upon to use his own best judgment, so as to do the work in the quickest time, and from this results in all cases a large variety in the shapes and types of implements which are used for any specific purpose. Scientific management requires, first, a careful investigation of each of the many modifications of the same implement, developed under rule of thumb; and second, after a time study has been made of the speed attainable with each of these implements, that the good points of several of them shall be united in a single standard implement, which will enable the workman to work faster and with greater ease than he could before. This one implement, then, is adopted as standard in place of the many different kinds before in use, and it remains standard for all workmen to use until superseded by an implement which has been shown, through motion and time study, to be still better.
With this explanation it will be seen that the development of a science to replace rule of thumb is in most cases by no means a formidable under-taking, and that it can be accomplished by ordinary, every-day men without any elaborate scientific training; but that, on the other hand, the successful use of even the simplest improvement of this kind calls for records, system, and cooperation where in the past existed only individual effort.
There is another type of scientific investigation which has been referred to several times in this paper, and which should receive special attention, namely, the accurate study of the motives which influence men. At first it may appear that this is a matter for individual observation and judgment, and is not a proper subject for exact scientific experiments. It is true that the laws which result from experiments of this cla.s.s, owing to the fact that the very complex organism--the human being--is being experimented with, are subject to a larger number of exceptions than is the case with laws relating to material things. And yet laws of this kind, which apply to a large majority of men, unquestionably exist, and when clearly defined are of great value as a guide in dealing with men. In developing these laws, accurate, carefully planned and executed experiments, extending through a term of years, have been made, similar in a general way to the experiments upon various other elements which have been referred to in this paper. Perhaps the most important law belonging to this cla.s.s, in its relation to scientific management, is the effect which the task idea has upon the efficiency of the workman. This, in fact, has become such an important element of the mechanism of scientific management, that by a great number of people scientific management has come to be known as "task management."
There is absolutely nothing new in the task idea. Each one of us will remember that in his own case this idea was applied with good results in his school-boy days. No efficient teacher would think of giving a cla.s.s of students an indefinite lesson to learn. Each day a definite, clear-cut task is set by the teacher before each scholar, stating that he must learn just so much of the subject; and it is only by this means that proper, systematic progress can be made by the students. The average boy would go very slowly if, instead of being given a task, he were told to do as much as he could. All of us are grown-up children, and it is equally true that the average workman will work with the greatest satisfaction, both to himself and to his employer, when he is given each day a definite task which he is to perform in a given time, and which const.i.tutes a proper day"s work for a good workman. This furnishes the workman with a clear-cut standard, by which he can throughout the day measure his own progress, and the accomplishment of which affords him the greatest satisfaction.
The writer has described in other papers a series of experiments made upon workmen, which have resulted in demonstrating the fact that it is impossible, through any long period of time, to get work-men to work much harder than the average men around them, unless they are a.s.sured a large and a permanent increase in their pay. This series of experiments, however, also proved that plenty of workmen can be found who are willing to work at their best speed, provided they are given this liberal increase in wages. The workman must, however, be fully a.s.sured that this increase beyond the average is to be permanent. Our experiments have shown that the exact percentage of increase required to make a workman work at his highest speed depends upon the kind of work which the man is doing.
It is absolutely necessary, then, when workmen are daily given a task which calls for a high rate of speed on their part, that they should also be insured the necessary high rate of pay whenever they are successful. This involves not only fixing for each man his daily task, but also paying him a large bonus, or premium, each time that he succeeds in doing his task in the given time. It is difficult to appreciate in full measure the help which the proper use of these two elements is to the workman in elevating him to the highest standard of efficiency and speed in his trade, and then keeping him there, unless one has seen first the old plan and afterward the new tried upon the same man. And in fact until one has seen similar accurate experiments made upon various grades of workmen engaged in doing widely different types of work. The remarkable and almost uniformly good results from the correct application of the task and the bonus must be seen to be appreciated.
These two elements, the task and the bonus (which, as has been pointed out in previous papers, can be applied in several ways), const.i.tute two of the most important elements of the mechanism of scientific management. They are especially important from the fact that they are, as it were, a climax, demanding before they can be used almost all of the other elements of the mechanism; such as a planning department, accurate time study, standardization of methods and implements, a routing system, the training of functional foremen or teachers, and in many cases instruction cards slide-rules, etc. (Referred to later in rather more detail on page 129.)
The necessity for systematically teaching workmen how to work to the best advantage has been several times referred to. It seems desirable, therefore, to explain in rather more detail how this teaching is done.
In the case of a machine-shop which is managed under the modern system, detailed written instructions as to the best way of doing each piece of work are prepared in advance, by men in the planning department. These instructions represent the combined work of several men in the planning room, each of whom has his own specialty, or function. One of them, for instance, is a specialist on the proper speeds and cutting tools to be used. He uses the slide-rules which have been above described as an aid, to guide him in obtaining proper speeds, etc. Another man a.n.a.lyzes the best and quickest motions to be made by the workman in setting the work up in the machine and removing it, etc. Still a third, through the time-study records which have been acc.u.mulated, makes out a timetable giving the proper speed for doing each element of the work. The directions of all of these men, however, are written on a single instruction card, or sheet.
These men of necessity spend most of their time in the planning department, because they must be close to the records and data which they continually use in their work, and because this work requires the use of a desk and freedom from interruption. Human nature is such, however, that many of the workmen, if left to themselves, would pay but little attention to their written instructions. It is necessary, therefore, to provide teachers (called functional foremen) to see that the workmen both understand and carry out these written instructions.
Under functional management, the old-fashioned single foreman is superseded by eight different men, each one of whom has his own special duties, and these men, acting as the agents for the planning department (see paragraph 234 to 245 of the paper ent.i.tled "Shop Management"), are the expert teachers, who are at all times in the shop, helping, and directing the workmen. Being each one chosen for his knowledge and personal skill in his specialty, they are able not only to tell the workman what he should do, but in case of necessity they do the work themselves in the presence of the workman, so as to show him not only the best but also the quickest methods.
One of these teachers (called the inspector) sees to it that he understands the drawings and instructions for doing the work. He teaches him how to do work of the right quality; how to make it fine and exact where it should be fine, and rough and quick where accuracy is not required,--the one being just as important for success as the other. The second teacher (the gang boss) shows him how to set up the job in his machine, and teaches him to make all of his personal motions in the quickest and best way. The third (the speed boss) sees that the machine is run at the best speed and that the proper tool is used in the particular way which will enable the machine to finish its product in the shortest possible time. In addition to the a.s.sistance given by these teachers, the workman receives orders and help from four other men; from the "repair boss" as to the adjustment, cleanliness, and general care of his machine, belting, etc.; from the "time clerk," as to everything relating to his pay and to proper written reports and returns; from the "route clerk," as to the order in which he does his work and as to the movement of the work from one part of the shop to another; and, in case a workman gets into any trouble with any of his various bosses, the "disciplinarian" interviews him.
It must be understood, of course, that all workmen engaged on the same kind of work do not require the same amount of individual teaching and attention from the functional foremen. The men who are new at a given operation naturally require far more teaching and watching than those who have been a long time at the same kind of jobs.
Now, when through all of this teaching and this minute instruction the work is apparently made so smooth and easy for the workman, the first impression is that this all tends to make him a mere automaton, a wooden man. As the workmen frequently say when they first come under this system, "Why, I am not allowed to think or move without some one interfering or doing it for me!" The same criticism and objection, however, can be raised against all other modern subdivision of labor. It does not follow, for example, that the modern surgeon is any more narrow or wooden a man than the early settler of this country. The frontiersman, however, had to be not only a surgeon, but also an architect, house-builder, lumberman, farmer, soldier, and doctor, and he had to settle his law cases with a gun. You would hardly say that the life of the modern surgeon is any more narrowing, or that he is more of a wooden man than the frontiersman. The many problems to be met and solved by the surgeon are just as intricate and difficult and as developing and broadening in their way as were those of the frontiersman.
And it should be remembered that the training of the surgeon has been almost identical in type with the teaching and training which is given to the workman under scientific management. The surgeon, all through his early years, is under the closest supervision of more experienced men, who show him in the minutest way how each element of his work is best done. They provide him with the finest implements, each one of which has been the subject of special study and development, and then insist upon his using each of these implements in the very best way. All of this teaching, however, in no way narrows him. On the contrary he is quickly given the very best knowledge of his predecessors; and, provided (as he is, right from the start) with standard implements and methods which represent the best knowledge of the world up to date, he is able to use his own originality and ingenuity to make real additions to the world"s knowledge, instead of reinventing things which are old. In a similar way the workman who is cooperating with his many teachers under scientific management has an opportunity to develop which is at least as good as and generally better than that which he had when the whole problem was "up to him" and he did his work entirely unaided.
If it were true that the workman would develop into a larger and finer man without all of this teaching, and without the help of the laws which have been formulated for doing his particular job, then it would follow that the young man who now comes to college to have the help of a teacher in mathematics, physics, chemistry, Latin, Greek, etc., would do better to study these things unaided and by himself. The only difference in the two cases is that students come to their teachers, while from the nature of the work done by the mechanic under scientific management, the teachers must go to him. What really happens is that, with the aid of the science which is invariably developed, and through the instructions from his teachers, each workman of a given intellectual capacity is enabled to do a much higher, more interesting, and finally more developing and more profitable kind of work than he was before able to do. The laborer who before was unable to do anything beyond, perhaps, shoveling and wheeling dirt from place to place, or carrying the work from one part of the shop to another, is in many cases taught to do the more elementary machinist"s work, accompanied by the agreeable surroundings and the interesting variety and higher wages which go with the machinist"s trade. The cheap machinist or helper, who before was able to run perhaps merely a drill press, is taught to do the more intricate and higher priced lathe and planer work, while the highly skilled and more intelligent machinists become functional foremen and teachers. And so on, right up the line.
It may seem that with scientific management there is not the same incentive for the workman to use his ingenuity in devising new and better methods of doing the work, as well as in improving his implements, that there is with the old type of management. It is true that with scientific management the workman is not allowed to use whatever implements and methods he sees fit in the daily practice of his work. Every encouragement, however, should be given him to suggest improvements, both in methods and in implements. And whenever a workman proposes an improvement, it should be the policy of the management to make a careful a.n.a.lysis of the new method, and if necessary conduct a series of experiments to determine accurately the relative merit of the new suggestion and of the old standard. And whenever the new method is found to be markedly superior to the old, it should be adopted as the standard for the whole establishment. The workman should be given the full credit for the improvement, and should be paid a cash premium as a reward for his ingenuity. In this way the true initiative of the workmen is better attained under scientific management than under the old individual plan.
The history of the development of scientific, management up to date, however, calls for a word of warning. The mechanism of management must not be mistaken for its essence, or underlying philosophy. Precisely the same mechanism will in one case produce disastrous results and in another the most beneficent. The same mechanism which will produce the finest results when made to serve the underlying principles of scientific management, will lead to failure and disaster if accompanied by the wrong spirit in those who are using it. Hundreds of people have already mistaken the mechanism of this system for its essence. Messrs.
Gantt, Barth and the writer have presented papers to, the American Society of Mechanical Engineers on the subject of scientific management.
In these papers the mechanism which is used has been described at some length. As elements of this mechanism may be cited:
Time study, with the implements and methods for properly making it.
Functional or divided foremanship and its superiority to the old-fashioned single foreman.
The standardization of all tools and implements used in the trades, and also of the acts or movements of workmen for each cla.s.s of work.
The desirability of a planning room or department.
The "exception principle" in management.
The use of slide-rules and similar timesaving implements.
Instruction cards for the workman.
The task idea in management, accompanied by a large bonus for the successful performance of the task.
The "differential rate."