3. The thickness of the wall should, in my opinion, be such that armed men meeting on top of it may pa.s.s one another without interference. In the thickness there should be set a very close succession of ties made of charred olive wood, binding the two faces of the wall together like pins, to give it lasting endurance. For that is a material which neither decay, nor the weather, nor time can harm, but even though buried in the earth or set in the water it keeps sound and useful forever. And so not only city walls but substructures in general and all walls that require a thickness like that of a city wall, will be long in falling to decay if tied in this manner.
4. The towers should be set at intervals of not more than a bowshot apart, so that in case of an a.s.sault upon any one of them, the enemy may be repulsed with scorpiones and other means of hurling missiles from the towers to the right and left. Opposite the inner side of every tower the wall should be interrupted for a s.p.a.ce the width of the tower, and have only a wooden flooring across, leading to the interior of the tower but not firmly nailed. This is to be cut away by the defenders in case the enemy gets possession of any portion of the wall; and if the work is quickly done, the enemy will not be able to make his way to the other towers and the rest of the wall unless he is ready to face a fall.
5. The towers themselves must be either round or polygonal. Square towers are sooner shattered by military engines, for the battering rams pound their angles to pieces; but in the case of round towers they can do no harm, being engaged, as it were, in driving wedges to their centre. The system of fortification by wall and towers may be made safest by the addition of earthen ramparts, for neither rams, nor mining, nor other engineering devices can do them any harm.
[Ill.u.s.tration: CONSTRUCTION OF CITY WALLS
(From the edition of Vitruvius by Fra Giocondo, Venice, 1511)]
6. The rampart form of defence, however, is not required in all places, but only where outside the wall there is high ground from which an a.s.sault on the fortifications may be made over a level s.p.a.ce lying between. In places of this kind we must first make very wide, deep ditches; next sink foundations for a wall in the bed of the ditch and build them thick enough to support an earth-work with ease.
7. Then within this substructure lay a second foundation, far enough inside the first to leave ample room for cohorts in line of battle to take position on the broad top of the rampart for its defence. Having laid these two foundations at this distance from one another, build cross walls between them, uniting the outer and inner foundation, in a comb-like arrangement, set like the teeth of a saw. With this form of construction, the enormous burden of earth will be distributed into small bodies, and will not lie with all its weight in one crushing ma.s.s so as to thrust out the substructures.
8. With regard to the material of which the actual wall should be constructed or finished, there can be no definite prescription, because we cannot obtain in all places the supplies that we desire. Dimension stone, flint, rubble, burnt or unburnt brick,--use them as you find them. For it is not every neighbourhood or particular locality that can have a wall built of burnt brick like that at Babylon, where there was plenty of asphalt to take the place of lime and sand, and yet possibly each may be provided with materials of equal usefulness so that out of them a faultless wall may be built to last forever.
CHAPTER VI
THE DIRECTIONS OF THE STREETS; WITH REMARKS ON THE WINDS
1. The town being fortified, the next step is the apportionment of house lots within the wall and the laying out of streets and alleys with regard to climatic conditions. They will be properly laid out if foresight is employed to exclude the winds from the alleys. Cold winds are disagreeable, hot winds enervating, moist winds unhealthy. We must, therefore, avoid mistakes in this matter and beware of the common experience of many communities. For example, Mytilene in the island of Lesbos is a town built with magnificence and good taste, but its position shows a lack of foresight. In that community when the wind is south, the people fall ill; when it is northwest, it sets them coughing; with a north wind they do indeed recover but cannot stand about in the alleys and streets, owing to the severe cold.
2. Wind is a flowing wave of air, moving hither and thither indefinitely. It is produced when heat meets moisture, the rush of heat generating a mighty current of air. That this is the fact we may learn from bronze eolipiles, and thus by means of a scientific invention discover a divine truth lurking in the laws of the heavens. Eolipiles are hollow bronze b.a.l.l.s, with a very small opening through which water is poured into them. Set before a fire, not a breath issues from them before they get warm; but as soon as they begin to boil, out comes a strong blast due to the fire. Thus from this slight and very short experiment we may understand and judge of the mighty and wonderful laws of the heavens and the nature of winds.
3. By shutting out the winds from our dwellings, therefore, we shall not only make the place healthful for people who are well, but also in the case of diseases due perhaps to unfavourable situations elsewhere, the patients, who in other healthy places might be cured by a different form of treatment, will here be more quickly cured by the mildness that comes from the shutting out of the winds. The diseases which are hard to cure in neighbourhoods such as those to which I have referred above are catarrh, hoa.r.s.eness, coughs, pleurisy, consumption, spitting of blood, and all others that are cured not by lowering the system but by building it up. They are hard to cure, first, because they are originally due to chills; secondly, because the patient"s system being already exhausted by disease, the air there, which is in constant agitation owing to winds and therefore deteriorated, takes all the sap of life out of their diseased bodies and leaves them more meagre every day. On the other hand, a mild, thick air, without draughts and not constantly blowing back and forth, builds up their frames by its unwavering steadiness, and so strengthens and restores people who are afflicted with these diseases.
4. Some have held that there are only four winds: Sola.n.u.s from due east; Auster from the south; Favonius from due west; Septentrio from the north. But more careful investigators tell us that there are eight.
Chief among such was Andronicus of Cyrrhus who in proof built the marble octagonal tower in Athens. On the several sides of the octagon he executed reliefs representing the several winds, each facing the point from which it blows; and on top of the tower he set a conical shaped piece of marble and on this a bronze Triton with a rod outstretched in its right hand. It was so contrived as to go round with the wind, always stopping to face the breeze and holding its rod as a pointer directly over the representation of the wind that was blowing.
5. Thus Eurus is placed to the southeast between Sola.n.u.s and Auster: Africus to the southwest between Auster and Favonius; Caurus, or, as many call it, Corus, between Favonius and Septentrio; and Aquilo between Septentrio and Sola.n.u.s. Such, then, appears to have been his device, including the numbers and names of the wind and indicating the directions from which particular winds blow. These facts being thus determined, to find the directions and quarters of the winds your method of procedure should be as follows.
6. In the middle of the city place a marble amussium, laying it true by the level, or else let the spot be made so true by means of rule and level that no amussium is necessary. In the very centre of that spot set up a bronze gnomon or "shadow tracker" (in Greek [Greek: skiatheras]).
At about the fifth hour in the morning, take the end of the shadow cast by this gnomon, and mark it with a point. Then, opening your compa.s.ses to this point which marks the length of the gnomon"s shadow, describe a circle from the centre. In the afternoon watch the shadow of your gnomon as it lengthens, and when it once more touches the circ.u.mference of this circle and the shadow in the afternoon is equal in length to that of the morning, mark it with a point.
[Ill.u.s.tration: THE TOWER OF THE WINDS AT ATHENS]
7. From these two points describe with your compa.s.ses intersecting arcs, and through their intersection and the centre let a line be drawn to the circ.u.mference of the circle to give us the quarters of south and north.
Then, using a sixteenth part of the entire circ.u.mference of the circle as a diameter, describe a circle with its centre on the line to the south, at the point where it crosses the circ.u.mference, and put points to the right and left on the circ.u.mference on the south side, repeating the process on the north side. From the four points thus obtained draw lines intersecting the centre from one side of the circ.u.mference to the other. Thus we shall have an eighth part of the circ.u.mference set out for Auster and another for Septentrio. The rest of the entire circ.u.mference is then to be divided into three equal parts on each side, and thus we have designed a figure equally apportioned among the eight winds. Then let the directions of your streets and alleys be laid down on the lines of division between the quarters of two winds.
8. On this principle of arrangement the disagreeable force of the winds will be shut out from dwellings and lines of houses. For if the streets run full in the face of the winds, their constant blasts rushing in from the open country, and then confined by narrow alleys, will sweep through them with great violence. The lines of houses must therefore be directed away from the quarters from which the winds blow, so that as they come in they may strike against the angles of the blocks and their force thus be broken and dispersed.
9. Those who know names for very many winds will perhaps be surprised at our setting forth that there are only eight. Remembering, however, that Eratosthenes of Cyrene, employing mathematical theories and geometrical methods, discovered from the course of the sun, the shadows cast by an equinoctial gnomon, and the inclination of the heaven that the circ.u.mference of the earth is two hundred and fifty-two thousand stadia, that is, thirty-one one million five hundred thousand paces, and observing that an eighth part of this, occupied by a wind, is three million nine hundred and thirty-seven thousand five hundred paces, they should not be surprised to find that a single wind, ranging over so wide a field, is subject to shifts this way and that, leading to a variety of breezes.
10. So we often have Leuconotus and Alta.n.u.s blowing respectively to the right and left of Auster; Libonotus and Subvesperus to the right and left of Africus; Argestes, and at certain periods the Etesiae, on either side of Favonius; Circias and Corus on the sides of Caurus; Thracias and Gallicus on either side of Septentrio; Supernas and Caecias to the right and left of Aquilo; Carbas, and at a certain period the Ornithiae, on either side of Sola.n.u.s; while Eurocircias and Volturnus blow on the flanks of Eurus which is between them. There are also many other names for winds derived from localities or from the squalls which sweep from rivers or down mountains.
11. Then, too, there are the breezes of early morning; for the sun on emerging from beneath the earth strikes humid air as he returns, and as he goes climbing up the sky he spreads it out before him, extracting breezes from the vapour that was there before the dawn. Those that still blow on after sunrise are cla.s.sed with Eurus, and hence appears to come the Greek name [Greek: euros] as the child of the breezes, and the word for "to-morrow," [Greek: aurion], named from the early morning breezes.
Some people do indeed say that Eratosthenes could not have inferred the true measure of the earth. Whether true or untrue, it cannot affect the truth of what I have written on the fixing of the quarters from which the different winds blow.
[Ill.u.s.tration: DIAGRAM OF THE WINDS (From the edition of Vitruvius by Fra Giocondo, Venice, 1511)]
12. If he was wrong, the only result will be that the individual winds may blow, not with the scope expected from his measurement, but with powers either more or less widely extended. For the readier understanding of these topics, since I have treated them with brevity, it has seemed best to me to give two figures, or, as the Greeks say, [Greek: schemata], at the end of this book: one designed to show the precise quarters from which the winds arise; the other, how by turning the directions of the rows of houses and the streets away from their full force, we may avoid unhealthy blasts. Let A be the centre of a plane surface, and B the point to which the shadow of the gnomon reaches in the morning. Taking A as the centre, open the compa.s.ses to the point B, which marks the shadow, and describe a circle. Put the gnomon back where it was before and wait for the shadow to lessen and grow again until in the afternoon it is equal to its length in the morning, touching the circ.u.mference at the point C. Then from the points B and C describe with the compa.s.ses two arcs intersecting at D. Next draw a line from the point of intersection D through the centre of the circle to the circ.u.mference and call it E F. This line will show where the south and north lie.
[Ill.u.s.tration]
13. Then find with the compa.s.ses a sixteenth part of the entire circ.u.mference; then centre the compa.s.ses on the point E where the line to the south touches the circ.u.mference, and set off the points G and H to the right and left of E. Likewise on the north side, centre the compa.s.ses on the circ.u.mference at the point F on the line to the north, and set off the points I and K to the right and left; then draw lines through the centre from G to K and from H to I. Thus the s.p.a.ce from G to H will belong to Auster and the south, and the s.p.a.ce from I to K will be that of Septentrio. The rest of the circ.u.mference is to be divided equally into three parts on the right and three on the left, those to the east at the points L and M, those to the west at the points N and O. Finally, intersecting lines are to be drawn from M to O and from L to N. Thus we shall have the circ.u.mference divided into eight equal s.p.a.ces for the winds. The figure being finished, we shall have at the eight different divisions, beginning at the south, the letter G between Eurus and Auster, H between Auster and Africus, N between Africus and Favonius, O between Favonius and Caurus, K between Caurus and Septentrio, I between Septentrio and Aquilo, L between Aquilo and Sola.n.u.s, and M between Sola.n.u.s and Eurus. This done, apply a gnomon to these eight divisions and thus fix the directions of the different alleys.
CHAPTER VII
THE SITES FOR PUBLIC BUILDINGS
1. Having laid out the alleys and determined the streets, we have next to treat of the choice of building sites for temples, the forum, and all other public places, with a view to general convenience and utility. If the city is on the sea, we should choose ground close to the harbour as the place where the forum is to be built; but if inland, in the middle of the town. For the temples, the sites for those of the G.o.ds under whose particular protection the state is thought to rest and for Jupiter, Juno, and Minerva, should be on the very highest point commanding a view of the greater part of the city. Mercury should be in the forum, or, like Isis and Serapis, in the emporium: Apollo and Father Bacchus near the theatre: Hercules at the circus in communities which have no gymnasia nor amphitheatres; Mars outside the city but at the training ground, and so Venus, but at the harbour. It is moreover shown by the Etruscan diviners in treatises on their science that the fanes of Venus, Vulcan, and Mars should be situated outside the walls, in order that the young men and married women may not become habituated in the city to the temptations incident to the worship of Venus, and that buildings may be free from the terror of fires through the religious rites and sacrifices which call the power of Vulcan beyond the walls.
As for Mars, when that divinity is enshrined outside the walls, the citizens will never take up arms against each other, and he will defend the city from its enemies and save it from danger in war.
2. Ceres also should be outside the city in a place to which people need never go except for the purpose of sacrifice. That place should be under the protection of religion, purity, and good morals. Proper sites should be set apart for the precincts of the other G.o.ds according to the nature of the sacrifices offered to them.
The principle governing the actual construction of temples and their symmetry I shall explain in my third and fourth books. In the second I have thought it best to give an account of the materials used in buildings with their good qualities and advantages, and then in the succeeding books to describe and explain the proportions of buildings, their arrangements, and the different forms of symmetry.
BOOK II
INTRODUCTION
1. Dinocrates, an architect who was full of confidence in his own ideas and skill, set out from Macedonia, in the reign of Alexander, to go to the army, being eager to win the approbation of the king. He took with him from his country letters from relatives and friends to the princ.i.p.al military men and officers of the court, in order to gain access to them more readily. Being politely received by them, he asked to be presented to Alexander as soon as possible. They promised, but were rather slow, waiting for a suitable opportunity. So Dinocrates, thinking that they were playing with him, had recourse to his own efforts. He was of very lofty stature and pleasing countenance, finely formed, and extremely dignified. Trusting, therefore, to these natural gifts, he undressed himself in his inn, anointed his body with oil, set a chaplet of poplar leaves on his head, draped his left shoulder with a lion"s skin, and holding a club in his right hand stalked forth to a place in front of the tribunal where the king was administering justice.
2. His strange appearance made the people turn round, and this led Alexander to look at him. In astonishment he gave orders to make way for him to draw near, and asked who he was. "Dinocrates," quoth he, "a Macedonian architect, who brings thee ideas and designs worthy of thy renown. I have made a design for the shaping of Mount Athos into the statue of a man, in whose left hand I have represented a very s.p.a.cious fortified city, and in his right a bowl to receive the water of all the streams which are in that mountain, so that it may pour from the bowl into the sea."
3. Alexander, delighted with the idea of his design, immediately inquired whether there were any fields in the neighbourhood that could maintain the city in corn. On finding that this was impossible without transport from beyond the sea, "Dinocrates," quoth he, "I appreciate your design as excellent in composition, and I am delighted with it, but I apprehend that anybody who should found a city in that spot would be censured for bad judgement. For as a newborn babe cannot be nourished without the nurse"s milk, nor conducted to the approaches that lead to growth in life, so a city cannot thrive without fields and the fruits thereof pouring into its walls, nor have a large population without plenty of food, nor maintain its population without a supply of it.
Therefore, while thinking that your design is commendable, I consider the site as not commendable; but I would have you stay with me, because I mean to make use of your services."
4. From that time, Dinocrates did not leave the king, but followed him into Egypt. There Alexander, observing a harbour rendered safe by nature, an excellent centre for trade, cornfields throughout all Egypt, and the great usefulness of the mighty river Nile, ordered him to build the city of Alexandria, named after the king. This was how Dinocrates, recommended only by his good looks and dignified carriage, came to be so famous. But as for me, Emperor, nature has not given me stature, age has marred my face, and my strength is impaired by ill health. Therefore, since these advantages fail me, I shall win your approval, as I hope, by the help of my knowledge and my writings.
5. In my first book, I have said what I had to say about the functions of architecture and the scope of the art, as well as about fortified towns and the apportionment of building sites within the fortifications.
Although it would next be in order to explain the proper proportions and symmetry of temples and public buildings, as well as of private houses, I thought best to postpone this until after I had treated the practical merits of the materials out of which, when they are brought together, buildings are constructed with due regard to the proper kind of material for each part, and until I had shown of what natural elements those materials are composed. But before beginning to explain their natural properties, I will prefix the motives which originally gave rise to buildings and the development of inventions in this field, following in the steps of early nature and of those writers who have devoted treatises to the origins of civilization and the investigation of inventions. My exposition will, therefore, follow the instruction which I have received from them.